
Windows
Sockets

Windows Sockets
An Open Interface for

Network Programming under
Microsoft Windows

Version 1.1

20 January 1993

Martin Hall
Mark Towfiq
Geoff Arnold

David Treadwell
Henry Sanders

Copyright 1992 by Martin Hall, Mark Towfiq
Geoff Arnold, David Treadwell and Henry Sanders

All rights reserved.

This document may be freely redistributed in any form,
electronic or otherwise, provided that it is distributed in
its entirety and that the copyright and this notice are
included. Comments or questions may be submitted via
electronic mail to winsock@microdyne.com. Requests to
be added to the Windows Sockets mailing list should be
addressed to winsock-request@microdyne.com. This
specification, archives of the mailing list, and other
information on Windows Sockets are available via
anonymous FTP from the host microdyne.com,
directory /pub/winsock. Questions about products
conforming to this specification should be addressed to
the vendors of the products.

Portions of the Windows Sockets specification are
derived from material which is Copyright (c) 1982-1986
by the Regents of the University of California. All rights
are reserved. The Berkeley Software License Agreement
specifies the terms and conditions for redistribution.

Revision history:
1.0 Rev.A June 11, 1992
1.0 Rev.B June 16, 1992
1.0 Rev. C October 12,
1992
1.1
January, 1993

2

Windows Sockets
Version 1.1

3

ACKNOWLEDGMENTS

The authors would like to thank their companies for allowing them the time and resources to make this
specification possible: JSB Corporation, Microdyne Corporation, FTP Software, Sun Microsystems, and
Microsoft Corporation.

Special thanks should also be extended to the other efforts contributing to the success of Windows Sockets.
The original draft was heavily influenced by existing specifications offered and detailed by JSB
Corporation and Net Manage, Inc. The "version 1.0 debate" hosted by Microsoft in Seattle allowed many of
the members of the working group to hash out final details for 1.0 vis-a-vis.

Sun Microsystems was kind enough to allow first time implementors to "plug and play" beta software
during the first Windows Sock-A-Thon of Windows Sockets applications and implementations at Interop
Fall '92. Microsoft has shared WSAT (the Windows Sockets API Tester) with other Windows Sockets
implementors as a standard Windows Sockets test suite to aid in testing their implementations. Finally, Sun
Microsystems and FTP Software plan to host the Windows Sock-A-Thon II in Boston February '93.

Without the contributions of the individuals and corporations involved in the working group, Windows
Sockets would never have been as thoroughly reviewed and completed as quickly. In just one year, several
competitors in the networking business developed a useful specification with something to show for it!
Many thanks to all which participated, either in person or on e-mail to the Windows Sockets effort. The
authors would like to thank everyone who participated in any way, and apologize in advance for anyone we
have omitted.

List of contributors:

Martin Hall (Chairman)
JSB Corporation

martinh@jsbus.com
Mark Towfiq (Coordinator)

Microdyne Corporation
towfiq@microdyne.com

Geoff Arnold (Editor 1.0)
Sun Microsystems
geoff@east.sun.com

David Treadwell (Editor 1.1)
Microsoft Corporation
davidtr@microsoft.com

Henry Sanders
Microsoft Corporation
henrysa@microsoft.com

J. Allard
Microsoft Corporation
jallard@microsoft.com
Chris Arap-Bologna
Distinct
chris@distinct.com
Larry Backman
FTP Software
backman@ftp.com
Alistair Banks

4

Microsoft Corporation
alistair@microsoft.com
Rob Barrow
JSB Corporation
robb@jsb.co.uk
Carl Beame
Beame & Whiteside
beame@mcmaster,ca
Dave Beaver
Microsoft Corporation
dbeaver@microsoft.com
Amatzia BenArtzi
NetManage, Inc.
amatzia@netmanage.com
Mark Beyer
Ungermann-Bass
mbeyer@ub.com
Nelson Bolyard
Silicon Graphics, Inc.
nelson@sgi.com
Pat Bonner
Hewlett-Packard
p_bonner@cnd.hp.com
Derek Brown
FTP Software
db@wco.ftp.com
Malcolm Butler
ICL
mcab@oasis.icl.co.uk
Mike Calbaum
Fronteir Technologies
mike@frontiertech.com
Isaac Chan
Microsoft Corporation
isaacc@microsoft.com
Khoji Darbani
Informix
khoji@informix.com
Nestor Fesas
Hughes LAN Systems
nestor@hls.com
Karanja Gakio
FTP Software
karanja@ftp.com
Vikas Garg
Distinct
vikas@distinct.com
Gary Gere

Gupta ggere@gupta.

com
Jim Gilroy
Microsoft Corporation
jamesg@microsoft.com

5

Bill Hayes
Hewlett-Packard
billh@hpchdpc.cnd.hp.com
Paul Hill
MIT
pbh@athena.mit.edu
Tmima Koren
Net Manage, Inc.
tmima@netmanage.com
Hoek Law
Citicorp
law@dcc.tti.com
Graeme Le Roux
Moresdawn P/L
-
Kevin Lewis
Novell
kevinl@novell.com
Roger Lin
3Com
roger_lin@3mail.3com.com
Terry Lister
Hewlett-Packard
tel@cnd.hp.com
Jeng Long Jiang
Wollongong
long@twg.com
Lee Murach
Network Research
lee@nrc.com
Pete Ostenson
Microsoft Corporation
peteo@microsoft.com
David Pool
Spry, Inc.
dave@spry.com
Bob Quinn
FTP Software
rcq@ftp.com
Glenn Reitsma
Hughes LAN Systems
glennr@hls.com
Brad Rice
Age
rice@age.com
Allen Rochkind
3Com
-
Jonathan Rosen
IBM
jrosen@vnet.ibm.com
Steve Stokes
Novell
stoke@novell.com

6

Joseph Tsai
3Com
joe_tsai@3mail.3com.com
James Van Bokkelen
FTP Software
jbvb@ftp.com
Miles Wu
Wollongong
wu@twg.com
Boris Yanovsky
NetManage, Inc.
boris@netmanage.com

7

1. INTRODUCTION
1.1 What is Windows Sockets?
The Windows Sockets specification defines a network programming interface for
Microsoft Windows1 which is based on the "socket" paradigm popularized in the
Berkeley Software Distribution (BSD) from the University of California at Berkeley. It
encompasses both familiar Berkeley socket style routines and a set of Windows-
specific extensions designed to allow the programmer to take advantage of the
message-driven nature of Windows.

The Windows Sockets Specification is intended to provide a single API to which
application developers can program and multiple network software vendors can
conform. Furthermore, in the context of a particular version of Microsoft Windows, it
defines a binary interface (ABI) such that an application written to the Windows
Sockets API can work with a conformant protocol implementation from any network
software vendor. This specification thus defines the library calls and associated
semantics to which an application developer can program and which a network
software vendor can implement.

Network software which conforms to this Windows Sockets specification will be
considered "Windows Sockets Compliant". Suppliers of interfaces which are
"Windows Sockets Compliant" shall be referred to as "Windows Sockets Suppliers". To
be Windows Sockets Compliant, a vendor must implement 100% of this Windows
Sockets specification.

Applications which are capable of operating with any "Windows Sockets Compliant"
protocol implementation will be considered as having a "Windows Sockets Interface"
and will be referred to as "Windows Sockets Applications".

This version of the Windows Sockets specification defines and documents the use of
the API in conjunction with the Internet Protocol Suite (IPS, generally referred to as
TCP/IP). Specifically, all Windows Sockets implementations support both stream (TCP)
and datagram (UDP) sockets.

While the use of this API with alternative protocol stacks is not precluded (and is
expected to be the subject of future revisions of the specification), such usage is
beyond the scope of this version of the specification.

1.2 Berkeley Sockets
The Windows Sockets Specification has been built upon the Berkeley Sockets
programming model which is the de facto standard for TCP/IP networking. It is
intended to provide a high degree of familiarity for programmers who are used to
programming with sockets in UNIX2 and other environments, and to simplify the task
of porting existing sockets-based source code. The Windows Sockets API is
consistent with release 4.3 of the Berkeley Software Distribution (4.3BSD).

Portions of the Windows Sockets specification are derived from material which is
Copyright (c) 1982-1986 by the Regents of the University of California. All rights are
reserved. The Berkeley Software License Agreement specifies the terms and
conditions for redistribution.

1.3 Microsoft Windows and Windows-specific extensions
This API is intended to be usable within all implementations and versions of Microsoft
Windows from Microsoft Windows Version 3.0 onwards. It thus provides for Windows

8

Sockets implementations and Windows Sockets applications in both 16 and 32 bit
operating environments.

Windows Sockets makes provisions for multithreaded Windows processes. A process
contains one or more threads of execution. In the Windows 3.1 non-multithreaded
world, a task corresponds to a process with a single thread. All references to threads
in this document refer to actual "threads" in multithreaded Windows environments.
In non multithreaded environments (such as Windows 3.0), use of the term thread
refers to a Windows process.

The Microsoft Windows extensions included in Windows Sockets are provided to allow
application developers to create software which conforms to the Windows
programming model. It is expected that this will facilitate the creation of robust and
high-performance applications, and will improve the cooperative multitasking of
applications within non-preemptive versions of Windows. With the exception of
WSAStartup() and WSACleanup() their use is not mandatory.

1.4 The Status of this Specification

Windows Sockets is an independent specification which was created and exists for the benefit of
application developers and network vendors and, indirectly, computer users. Each published (non-draft)
version of this specification represents a fully workable API for implementation by network vendors and
programming use by application developers. Discussion of this specification and suggested improvements
continue and are welcomed. Such discussion occurs mainly via the Internet electronic mail forum
winsock@microdyne.com. Meetings of interested parties occur on an irregular basis. Details of these
meetings are publicized to the electronic mail forum.

1.5 Revision History
1.5.1 Windows Sockets Version 1.0
Windows Sockets Version 1.0 represented the results of considerable work within the vendor and user
community as discussed in Appendix C. This version of the specification was released in order that
network software suppliers and application developers could begin to construct implementations and
applications which conformed to the Windows Sockets standard.

1.5.2 Windows Sockets Version 1.1
Windows Sockets Version 1.1 follows the guidelines and structure laid out by version 1.0, making changes
only where absolutely necessary as indicated by the experiences of a number of companies that created
Windows Sockets implementations based on the version 1.0 specification. Version 1.1 contains several
clarifications and minor fixes to version 1.0. Additionally, the following more significant changes were
incorporated into version 1.1:

o Inclusion of the gethostname() routine to simplify retrieval of the host's name and address.

o Definition of DLL ordinal values below 1000 as reserved for Windows Sockets and ordinals
above 1000 as unrestricted. This allows Windows Sockets vendors to include private interfaces to
their DLLs without risking that the ordinals chosen will conflict with a future version of Windows
Sockets.

o Addition of a reference count to WSAStartup() and WSACleanup(),
requiring correspondences between the calls. This allows applications and
third-party DLLs to make use of a Windows Sockets implementation without
being concerned about the calls to these APIs made by the other.

9

o Change of return type of inet_addr() from struct in_addr to unsigned long. This was required
due to different handling of four-byte structure returns between the Microsoft and Borland C
compilers.

o Change of WSAAsyncSelect() semantics from "edge-triggered" to "level-triggered". The level-
triggered semantics significantly simplify an application's use of this routine.

o Change the ioctlsocket() FIONBIO semantics to fail if a WSAAsyncSelect() call is outstanding
on the socket.

o Addition of the TCP_NODELAY socket option for RFC 1122 conformance.

All changes between the 1.0 and 1.1 specifications are flagged with change bars at
the left of the page.

10

ROGRAMMING WITH SOCKETS
2.1 Windows Sockets Stack Installation Checking
To detect the presence of one (or many) Windows Sockets implementations on a
system, an application which has been linked with the Windows Sockets Import
Library may simply call the WSAStartup() routine. If an application wishes to be a
little more sophisticated it can examine the $PATH environment variable and search
for instances of Windows Sockets implementations (WINSOCK.DLL). For each
instance it can issue a LoadLibrary() call and use the WSAStartup() routine to
discover implementation specific data.

This version of the Windows Sockets specification does not attempt to address
explicitly the issue of multiple concurrent Windows Sockets implementations.
Nothing in the specification should be interpreted as restricting multiple Windows
Sockets DLLs from being present and used concurrently by one or more Windows
Sockets applications.

For further details of where to obtain Windows Sockets components, see Appendix
B.2.

2.2 Sockets
The following material is derived from the document "An Advanced 4.3BSD Interprocess Communication
Tutorial" by Samuel J. Leffler, Robert S. Fabry, William N. Joy, Phil Lapsley, Steve Miller, and Chris
Torek.

2.2.1 Basic concepts
The basic building block for communication is the socket. A socket is an endpoint of
communication to which a name may be bound. Each socket in use has a type and
an associated process. Sockets exist within communication domains. A
communication domain is an abstraction introduced to bundle common properties of
threads communicating through sockets. Sockets normally exchange data only with
sockets in the same domain (it may be possible to cross domain boundaries, but only
if some translation process is performed). The Windows Sockets facilities support a
single communication domain: the Internet domain, which is used by processes which
communicate using the Internet Protocol Suite. (Future versions of this specification
may include additional domains.)

Sockets are typed according to the communication properties visible to a user.
Applications are presumed to communicate only between sockets of the same type,
although there is nothing that prevents communication between sockets of different
types should the underlying communication protocols support this.

Two types of sockets currently are available to a user. A stream socket provides for
the bi-directional, reliable, sequenced, and unduplicated flow of data without record
boundaries.

A datagram socket supports bi-directional flow of data which is not promised to be
sequenced, reliable, or unduplicated. That is, a process receiving messages on a
datagram socket may find messages duplicated, and, possibly, in an order different
from the order in which it was sent. An important characteristic of a datagram socket
is that record boundaries in data are preserved. Datagram sockets closely model the
facilities found in many contemporary packet switched networks such as Ethernet.

2.2.2 Client-server model
11

The most commonly used paradigm in constructing distributed applications is the
client/server model. In this scheme client applications request services from a server
application. This implies an asymmetry in establishing communication between the
client and server.

The client and server require a well-known set of conventions before service may be
rendered (and accepted). This set of conventions comprises a protocol which must
be implemented at both ends of a connection. Depending on the situation, the
protocol may be symmetric or asymmetric. In a symmetric protocol, either side may
play the master or slave roles. In an asymmetric protocol, one side is immutably
recognized as the master, with the other as the slave. An example of a symmetric
protocol is the TELNET protocol used in the Internet for remote terminal emulation.
An example of an asymmetric protocol is the Internet file transfer protocol, FTP. No
matter whether the specific protocol used in obtaining a service is symmetric or
asymmetric, when accessing a service there is a "client process'' and a "server
process''.

A server application normally listens at a well-known address for service requests.
That is, the server process remains dormant until a connection is requested by a
client's connection to the server's address. At such a time the server process "wakes
up'' and services the client, performing whatever appropriate actions the client
requests of it. While connection-based services are the norm, some services are
based on the use of datagram sockets.

2.2.3 Out-of-band data
Note: The following discussion of out-of-band data, also referred to as TCP Urgent
data, follows the model used in the Berkeley software distribution. Users and
implementors should be aware of the fact that there are at present two conflicting
interpretations of RFC 793 (in which the concept is introduced), and that the
implementation of out-of-band data in the Berkeley Software Distribution does not
conform to the Host Requirements laid down in RFC 1122. To minimize
interoperability problems, applications writers are advised not to use out-of-band
data unless this is required in order to interoperate with an existing service. Windows
Sockets suppliers are urged to document the out-of-band semantics (BSD or RFC
1122) which their product implements. It is beyond the scope of this specification to
mandate a particular set of semantics for out-of-band data handling.

The stream socket abstraction includes the notion of "out of band'' data. Out-of-band
data is a logically independent transmission channel associated with each pair of
connected stream sockets. Out-of-band data is delivered to the user independently
of normal data. The abstraction defines that the out-of-band data facilities must
support the reliable delivery of at least one out-of-band message at a time. This
message may contain at least one byte of data, and at least one message may be
pending delivery to the user at any one time. For communications protocols which
support only in-band signaling (i.e. the urgent data is delivered in sequence with the
normal data), the system normally extracts the data from the normal data stream
and stores it separately. This allows users to choose between receiving the urgent
data in order and receiving it out of sequence without having to buffer all the
intervening data. It is possible to "peek'' at out-of-band data.

An application may prefer to process out-of-band data "in-line", as part of the normal
data stream. This is achieved by setting the socket option SO_OOBINLINE (see
section , setsockopt()). In this case, the application may wish to determine whether
any of the unread data is "urgent" (the term usually applied to in-line out-of-band

12

data). To facilitate this, the Windows Sockets implementation will maintain a logical
"mark" in the data stream indicate the point at which the out-of-band data was sent.
An application can use the SIOCATMARK ioctlsocket() command (see section) to
determine whether there is any unread data preceding the mark. For example, it
might use this to resynchronize with its peer by ensuring that all data up to the mark
in the data stream is discarded when appropriate.

The WSAAsyncSelect() routine is particularly well suited to handling notification of
the presence of out-of-band-data.

2.2.4 Broadcasting
By using a datagram socket, it is possible to send broadcast packets on many
networks supported by the system. The network itself must support broadcast: the
system provides no simulation of broadcast in software. Broadcast messages can
place a high load on a network, since they force every host on the network to service
them. Consequently, the ability to send broadcast packets has been limited to
sockets which are explicitly marked as allowing broadcasting. Broadcast is typically
used for one of two reasons: it is desired to find a resource on a local network without
prior knowledge of its address, or important functions such as routing require that
information be sent to all accessible neighbors.

The destination address of the message to be broadcast depends on the network(s)
on which the message is to be broadcast. The Internet domain supports a shorthand
notation for broadcast on the local network, the address INADDR_BROADCAST.
Received broadcast messages contain the senders address and port, as datagram
sockets must be bound before use.

Some types of network support the notion of different types of broadcast. For
example, the IEEE 802.5 token ring architecture supports the use of link-level
broadcast indicators, which control whether broadcasts are forwarded by bridges.
The Windows Sockets specification does not provide any mechanism whereby an
application can determine the type of underlying network, nor any way to control the
semantics of broadcasting.

2.3 Byte Ordering
The Intel byte ordering is like that of the DEC VAX3, and therefore differs from the
Internet and 680004-type processor byte ordering. Thus care must be taken to
ensure correct orientation.

Any reference to IP addresses or port numbers passed to or from a Windows Sockets
routine must be in network order. This includes the IP address and port fields of a
struct sockaddr_in (but not the sin_family field).

Consider an application which normally contacts a server on the TCP port
corresponding to the "time" service, but which provides a mechanism for the user to
specify that an alternative port is to be used. The port number returned by
getservbyname() is already in network order, which is the format required
constructing an address, so no translation is required. However if the user elects to
use a different port, entered as an integer, the application must convert this from
host to network order (using the htons() function) before using it to construct an
address. Conversely, if the application wishes to display the number of the port
within an address (returned via, e.g., getpeername()), the port number must be
converted from network to host order (using ntohs()) before it can be displayed.

13

Since the Intel and Internet byte orders are different, the conversions described
above are unavoidable. Application writers are cautioned that they should use the
standard conversion functions provided as part of the Windows Sockets API rather
than writing their own conversion code, since future implementations of Windows
Sockets are likely to run on systems for which the host order is identical to the
network byte order. Only applications which use the standard conversion functions
are likely to be portable.

2.4 Socket Options
The socket options supported by Windows Sockets are listed in the pages describing
setsockopt() and getsockopt(). A Windows Sockets implementation must
recognize all of these options, and (for getsockopt()) return plausible values for
each. The default value for each option is shown in the following table.

Value
Type
Meaning
Default
Note
SO_ACCEPTCONN
BOOL
Socket is listen()ing.
FALSE unless a listen() has been performed

SO_BROADCAST
BOOL
Socket is configured for the transmission of broadcast messages.
FALSE

SO_DEBUG
BOOL
Debugging is enabled.
FALSE
(i)
SO_DONTLINGER
BOOL
If true, the SO_LINGER option is disabled.
TRUE

SO_DONTROUTE
BOOL
Routing is disabled.
FALSE
(i)
SO_ERROR
int
Retrieve error status and clear.
0

SO_KEEPALIVE
BOOL
Keepalives are being sent.
FALSE

14

SO_LINGER
struct linger FAR *
Returns the current linger options.
l_onoff is 0

SO_OOBINLINE
BOOL
Out-of-band data is being received in the normal data stream.
FALSE

SO_RCVBUF
int
Buffer size for receives
Implementation dependent
(i)
SO_REUSEADDR
BOOL
The address to which this socket is bound can be used by others.
FALSE

SO_SNDBUF
int
Buffer size for sends
Implementation dependent
(i)
SO_TYPE
int
The type of the socket (e.g. SOCK_STREAM).
As created via socket()

TCP_NODELAY
BOOL
Disables the Nagle algorithm for send coalescing.
Implementation dependent

Notes:
(i) An implementation may silently ignore this option on setsockopt()

and return a constant value for getsockopt(), or it may accept a value
for setsockopt() and return the corresponding value in getsockopt()
without using the value in any way.

2.5 Database Files
The getXbyY()5 and WSAAsyncGetXByY() classes of routines are provided for
retrieving network specific information. The getXbyY() routines were originally
designed (in the first Berkeley UNIX releases) as mechanisms for looking up
information in text databases. Although the information may be retrieved by the
Windows Sockets implementation in different ways, a Windows Sockets application
requests such information in a consistent manner through either the getXbyY() or
the WSAAsyncGetXByY() class of routines.

2.6 Deviation from Berkeley Sockets
There are a few limited instances where the Windows Sockets API has had to divert

15

from strict adherence to the Berkeley conventions, usually because of difficulties of
implementation in a Windows environment.

2.6.1 socket data type and error values
A new data type, SOCKET, has been defined. The definition of this type was
necessary for future enhancements to the Windows Sockets specification, such as
being able to use sockets as file handles in Windows NT6. Definition of this type also
facilitates porting of applications to a Win/32 environment, as the type will
automatically be promoted from 16 to 32 bits.

In UNIX, all handles, including socket handles, are small, non-negative integers, and
some applications make assumptions that this will be true. Windows Sockets handles
have no restrictions, other than that the value INVALID_SOCKET is not a valid socket.
Socket handles may take any value in the range 0 to INVALID_SOCKET-1.

Because the SOCKET type is unsigned, compiling existing source code from, for
example, a UNIX environment may lead to compiler warnings about signed/unsigned
data type mismatches.

This means, for example, that checking for errors when the socket() and accept()
routines return should not be done by comparing the return value with -1, or seeing if
the value is negative (both common, and legal, approaches in BSD). Instead, an
application should use the manifest constant INVALID_SOCKET as defined in
winsock.h. For example:

TYPICAL BSD STYLE:
s = socket(...);
if (s == -1) /* or s < 0 */

{...}

PREFERRED STYLE:
s = socket(...);
if (s == INVALID_SOCKET)

{...}

2.6.2 select() and FD_*
Because a SOCKET is no longer represented by the UNIX-style "small non-negative
integer", the implementation of the select() function was changed in the Windows
Sockets API. Each set of sockets is still represented by the fd_set type, but instead of
being stored as a bitmask the set is implemented as an array of SOCKETs. To avoid
potential problems, applications must adhere to the use of the FD_XXX macros to set,
initialize, clear, and check the fd_set structures.

2.6.3 Error codes - errno, h_errno & WSAGetLastError()
Error codes set by the Windows Sockets implementation are NOT made available via
the errno variable. Additionally, for the getXbyY() class of functions, error codes are
NOT made available via the h_errno variable. Instead, error codes are accessed by
using the WSAGetLastError() API described in section . This function is provided in
Windows Sockets as a precursor (and eventually an alias) for the Win32 function
GetLastError(). This is intended to provide a reliable way for a thread in a multi-
threaded process to obtain per-thread error information.

For compatibility with BSD, an application may choose to include a line of the form:

16

#define errno WSAGetLastError()

This will allow networking code which was written to use the global errno to work
correctly in a single-threaded environment. There are, obviously, some drawbacks. If
a source file includes code which inspects errno for both socket and non-socket
functions, this mechanism cannot be used. Furthermore, it is not possible for an
application to assign a new value to errno (In Windows Sockets the function
WSASetLastError() may be used for this purpose.)

TYPICAL BSD STYLE:
r = recv(...);
if (r == -1
 && errno == EWOULDBLOCK)

{...}

PREFERRED STYLE:
r = recv(...);
if (r == -1 /* (but see below) */
 && WSAGetLastError() == EWOULDBLOCK)

{...}
Although error constants consistent with 4.3 Berkeley Sockets are provided for
compatibility purposes, applications should, where possible, use the "WSA" error
code definitions. For example, a more accurate version of the above source code
fragment is:

r = recv(...);
if (r == -1 /* (but see below) */
 && WSAGetLastError() == WSAEWOULDBLOCK)

{...}

2.6.4 Pointers
All pointers used by applications with Windows Sockets should be FAR. To facilitate
this, data type definitions such as LPHOSTENT are provided.

2.6.5 Renamed functions
In two cases it was necessary to rename functions which are used in Berkeley
Sockets in order to avoid clashes with other APIs.

2.6.5.1 close() & closesocket()
In Berkeley Sockets, sockets are represented by standard file descriptors, and so the
close() function can be used to close sockets as well as regular files. While nothing
in the Windows Sockets API prevents an implementation from using regular file
handles to identify sockets, nothing requires it either. Socket descriptors are not
presumed to correspond to regular file handles, and file operations such as read(),
write(), and close() cannot be assumed to work correctly when applied to sockets.
Sockets must be closed by using the closesocket() routine. Using the close()
routine to close a socket is incorrect and the effects of doing so are undefined by this
specification.

2.6.5.1 ioctl() & ioctlsocket()
Various C language run-time systems use the ioctl() routine for purposes unrelated
to Windows Sockets. For this reason we have defined the routine ioctlsocket()

17

which is used to handle socket functions which in the Berkeley Software Distribution
are performed using ioctl() and fcntl().

2.6.6 Blocking routines & EINPROGRESS
Although blocking operations on sockets are supported under Windows Sockets, their
use is strongly discouraged. Programmers who are constrained to use blocking mode
- for example, as part of an existing application which is to be ported - should be
aware of the semantics of blocking operations in Windows Sockets. See section for
more details.

2.6.7 Maximum number of sockets supported
The maximum number of sockets supported by a particular Windows Sockets supplier
is implementation specific. An application should make no assumptions about the
availability of a certain number of sockets. This topic is addressed further in section ,
WSAStartup(). However, independent of the number of sockets supported by a
particular implementation is the issue of the maximum number of sockets which an
application can actually make use of.

The maximum number of sockets which a Windows Sockets application can make use
of is determined at compile time by the manifest constant FD_SETSIZE. This value is
used in constructing the fd_set structures used in select() (see section). The default
value in winsock.h is 64. If an application is designed to be capable of working with
more than 64 sockets, the implementor should define the manifest FD_SETSIZE in
every source file before including winsock.h. One way of doing this may be to
include the definition within the compiler options in the makefile, for example adding
-DFD_SETSIZE=128 as an option to the compiler command line for Microsoft C. It
must be emphasized that defining FD_SETSIZE as a particular value has no effect on
the actual number of sockets provided by a Windows Sockets implementation.

2.6.8 Include files
For ease of portability of existing Berkeley sockets based source code, a number of
standard Berkeley include files are supported. However, these Berkeley header files
merely include the winsock.h include file, and it is therefore sufficient (and
recommended) that Windows Sockets application source files should simply include
winsock.h.

2.6.9 Return values on API failure
The manifest constant SOCKET_ERROR is provided for checking API failure. Although
use of this constant is not mandatory, it is recommended. The following example
illustrates the use of the SOCKET_ERROR constant:

TYPICAL BSD STYLE:
r = recv(...);
if (r == -1 /* or r < 0 */
 && errno == EWOULDBLOCK)

{...}
PREFERRED STYLE:

r = recv(...);
if (r == SOCKET_ERROR
 && WSAGetLastError() == WSAEWOULDBLOCK)

{...}

2.6.10 Raw Sockets
18

The Windows Sockets specification does not mandate that a Windows Sockets DLL
support raw sockets, that is, sockets opened with SOCK_RAW. However, a Windows
Sockets DLL is allowed and encouraged to supply raw socket support. A Windows
Sockets-compliant application that wishes to use raw sockets should attempt to open
the socket with the socket() call (see section), and if it fails either attempt to use
another socket type or indicate the failure to the user.

2.7 Windows Sockets in Multithreaded Versions of Windows
The Windows Sockets interface is designed to work for both single-threaded versions
of Windows (such as Windows 3.1) and preemptive multithreaded versions of
Windows (such as Windows NT). In a multithreaded environment the sockets
interface is basically the same, but the author of a multithreaded application must be
aware that it is the responsibility of the application, not the Windows Sockets
implementation, to synchronize access to a socket between threads. This is the
same rule as applies to other forms of I/O such as file I/O. Failure to synchronize calls
on a socket leads to unpredictable results; for example if there are two simultaneous
calls to send(), there is no guarantee as to the order in which the data will be sent.

Closing a socket in one thread that has an outstanding blocking call on the same
socket in another thread will cause the blocking call to fail with WSAEINTR, just as if
the operation were canceled. This also applies if there is a select() call outstanding
and the application closes one of the sockets being selected.

There is no default blocking hook installed in preemptive multithreaded versions of
Windows. This is because the machine will not be blocked if a single application is
waiting for an operation to complete and hence not calling PeekMessage() or
GetMessage() which cause the application to yield in nonpremptive Windows.
However, for backwards compatibility the WSASetBlockingHook() call is
implemented in multithreaded versions of Windows, and any application whose
behavior depends on the default blocking hook may install their own blocking hook
which duplicates the default hook's semantics, if desired.

19

3. SOCKET LIBRARY OVERVIEW
3.1 Socket Functions
The Windows Sockets specification includes the following Berkeley-style socket
routines:

accept() *
An incoming connection is acknowledged and associated with an immediately
created socket. The original socket is returned to the listening state.
bind()
Assign a local name to an unnamed socket.
closesocket() *
Remove a socket from the per-process object reference table. Only blocks if
SO_LINGER is set.
connect() *
Initiate a connection on the specified socket.
getpeername()
Retrieve the name of the peer connected to the specified socket.
getsockname()
Retrieve the current name for the specified socket
getsockopt()
Retrieve options associated with the specified socket.
htonl()
Convert a 32-bit quantity from host byte order to network byte order.
htons()
Convert a 16-bit quantity from host byte order to network byte order.
inet_addr()
Converts a character string representing a number in the Internet standard ".''
notation to an Internet address value.
inet_ntoa()
Converts an Internet address value to an ASCII string in ".'' notation i.e. "a.b.c.d''.
ioctlsocket()
Provide control for sockets.
listen()
Listen for incoming connections on a specified socket.
ntohl()
Convert a 32-bit quantity from network byte order to host byte order.
ntohs()
Convert a 16-bit quantity from network byte order to host byte order.
recv() *
Receive data from a connected socket.
recvfrom() *
Receive data from either a connected or unconnected socket.
select() *
Perform synchronous I/O multiplexing.
send() *
Send data to a connected socket.
sendto() *
Send data to either a connected or unconnected socket.
setsockopt()
Store options associated with the specified socket.
shutdown()
Shut down part of a full-duplex connection.
socket()
Create an endpoint for communication and return a socket.

20

* = The routine can block if acting on a blocking socket.

3.1.1 Blocking/Non blocking & Data Volatility
One major issue in porting applications from a Berkeley sockets environment to a
Windows environment involves "blocking"; that is, invoking a function which does not
return until the associated operation is completed. The problem arises when the
operation may take an arbitrarily long time to complete: an obvious example is a
recv() which may block until data has been received from the peer system. The
default behavior within the Berkeley sockets model is for a socket to operate in a
blocking mode unless the programmer explicitly requests that operations be treated
as non-blocking. It is strongly recommended that programmers use the
nonblocking (asynchronous) operations if at all possible, as they work
significantly better within the nonpreemptive Windows environment. Use
blocking operations only if absolutely necessary, and carefully read and
understand this section if you must use blocking operations.

Even on a blocking socket, some operations (e.g. bind(), getsockopt(),
getpeername()) can be completed immediately. For such operations there is no
difference between blocking and non-blocking operation. Other operations (e.g.
recv()) may be completed immediately or may take an arbitrary time to complete,
depending on various transport conditions. When applied to a blocking socket, these
operations are referred to as blocking operations. All routines which can block are
listed with an asterisk in the tables above and below.

Within a Windows Sockets implementation, a blocking operation which cannot be
completed immediately is handled as follows. The DLL initiates the operation, and
then enters a loop in which it dispatches any Windows messages (yielding the
processor to another thread if necessary) and then checks for the completion of the
Windows Sockets function. If the function has completed, or if
WSACancelBlockingCall() has been invoked, the blocking function completes with
an appropriate result. Refer to section , WSASetBlockingHook(), for a complete
description of this mechanism, including pseudocode for the various functions.

If a Windows message is received for a process for which a blocking operation is in
progress, there is a risk that the application will attempt to issue another Windows
Sockets call. Because of the difficulty of managing this condition safely, the Windows
Sockets specification does not support such application behavior. Two functions are
provided to assist the programmer in this situation. WSAIsBlocking() may be called
to determine whether or not a blocking Windows Sockets call is in progress.
WSACancelBlockingCall() may be called to cancel an in-progress blocking call, if
any. Any other Windows Sockets function which is called in this situation will fail with
the error WSAEINPROGRESS. It should be emphasized that this restriction applies to
both blocking and non-blocking operations.

Although this mechanism is sufficient for simple applications, it cannot support the
complex message-dispatching requirements of more advanced applications (for
example, those using the MDI model). For such applications, the Windows Sockets
API includes the function WSASetBlockingHook(), which allows the programmer to
define a special routine which will be called instead of the default message dispatch
routine described above.

The Windows Sockets DLL calls the blocking hook only if all of the following are true:
the routine is one which is defined as being able to block, the specified socket is a

21

blocking socket, and the request cannot be completed immediately. (A socket is set
to blocking by default, but the IOCTL FIONBIO and WSAAsyncSelect() both set a
socket to nonblocking mode.) If an application uses only non-blocking sockets and
uses the WSAAsyncSelect() and/or the WSAAsyncGetXByY() routines instead of
select() and the getXbyY() routines, then the blocking hook will never be called and
the application does not need to be concerned with the reentrancy issues the
blocking hook can introduce.

If an application invokes an asynchronous or non-blocking operation which takes a
pointer to a memory object (e.g. a buffer, or a global variable) as an argument, it is
the responsibility of the application to ensure that the object is available to the
Windows Sockets implementation throughout the operation. The application must
not invoke any Windows function which might affect the mapping or addressability of
the memory involved. In a multithreaded system, the application is also responsible
for coordinating access to the object using appropriate synchronization mechanisms.
A Windows Sockets implementation cannot, and will not, address these issues. The
possible consequences of failing to observe these rules are beyond the scope of this
specification.

3.2 Database Functions
The Windows Sockets specification defines the following "database" routines. As
noted earlier, a Windows Sockets supplier may choose to implement these in a
manner which does not depend on local database files. The pointer returned by
certain database routines such as gethostbyname() points to a structure which is
allocated by the Windows Sockets library. The data which is pointed to is volatile and
is good only until the next Windows Sockets API call from that thread. Additionally,
the application must never attempt to modify this structure or to free any of its
components. Only one copy of this structure is allocated for a thread, and so the
application should copy any information which it needs before issuing any other
Windows Sockets API calls.

gethostbyaddr() *
Retrieve the name(s) and address corresponding to a network address.
gethostbyname() *
Retrieve the name(s) and address corresponding to a host name.
gethostname()
Retrieve the name of the local host.
getprotobyname() *
Retrieve the protocol name and number corresponding to a protocol name.
getprotobynumber() *
Retrieve the protocol name and number corresponding to a protocol number.
getservbyname() *
Retrieve the service name and port corresponding to a service name.
getservbyport() *
Retrieve the service name and port corresponding to a port.

* = The routine can block under some circumstances.

3.3 Microsoft Windows-specific Extension Functions
The Windows Sockets specification provides a number of extensions to the standard
set of Berkeley Sockets routines. Principally, these extended APIs allow message-

22

based, asynchronous access to network events. While use of this extended API set is
not mandatory for socket-based programming (with the exception of WSAStartup()
and WSACleanup()), it is recommended for conformance with the Microsoft
Windows programming paradigm.

WSAAsyncGetHostByAddr()
A set of functions which provide asynchronous
WSAAsyncGetHostByName()
versions of the standard Berkeley
WSAAsyncGetProtoByName()
getXbyY() functions. For example, the
WSAAsyncGetProtoByNumber()
WSAAsyncGetHostByName() function provides an
WSAAsyncGetServByName()
asynchronous message based implementation of
WSAAsyncGetServByPort()
the standard Berkeley gethostbyname() function.
WSAAsyncSelect()
Perform asynchronous version of select()
WSACancelAsyncRequest()
Cancel an outstanding instance of a WSAAsyncGetXByY() function.
WSACancelBlockingCall()
Cancel an outstanding "blocking" API call
WSACleanup()
Sign off from the underlying Windows Sockets DLL.
WSAGetLastError()
Obtain details of last Windows Sockets API error
WSAIsBlocking()
Determine if the underlying Windows Sockets DLL is already blocking an existing call
for this thread
WSASetBlockingHook()
"Hook" the blocking method used by the underlying Windows Sockets
implementation
WSASetLastError()
Set the error to be returned by a subsequent WSAGetLastError()
WSAStartup()
Initialize the underlying Windows Sockets DLL.
WSAUnhookBlockingHook()
Restore the original blocking function

3.3.1 Asynchronous select() Mechanism
The WSAAsyncSelect() API allows an application to register an interest in one or
many network events. This API is provided to supersede the need to do polled
network I/O. Any situation in which select() or non-blocking I/O routines (such as
send() and recv()) are either already used or are being considered is usually a
candidate for the WSAAsyncSelect() API. When declaring interest in such
condition(s), you supply a window handle to be used for notification. The
corresponding window then receives message-based notification of the conditions in
which you declared an interest.

WSAAsyncSelect() allows interest to be declared in the following conditions for a
particular socket:

Socket readiness for reading
23

Socket readiness for writing
Out-of-band data ready for reading
Socket readiness for accepting incoming

connection
Completion of non-blocking connect()
Connection closure

3.3.2 Asynchronous Support Routines
The asynchronous "database" functions allow applications to request information in
an asynchronous manner. Some network implementations and/or configurations
perform network based operations to resolve such requests. The
WSAAsyncGetXByY() functions allow application developers to request services
which would otherwise block the operation of the whole Windows environment if the
standard Berkeley function were used. The WSACancelAsyncRequest() function
allows an application to cancel any outstanding asynchronous request.

3.3.3 Hooking Blocking Methods
As noted in section above, Windows Sockets implements blocking operations in such
a way that Windows message processing can continue, which may result in the
application which issued the call receiving a Windows message. In certain situations
an application may want to influence or change the way in which this pseudo-
blocking process is implemented. The WSASetBlockingHook() provides the ability
to substitute a named routine which the Windows Sockets implementation is to use
when relinquishing the processor during a "blocking" operation.

3.3.4 Error Handling
For compatibility with thread-based environments, details of API errors are obtained
through the WSAGetLastError() API. Although the accepted "Berkeley-Style"
mechanism for obtaining socket-based network errors is via "errno", this mechanism
cannot guarantee the integrity of an error ID in a multi-threaded environment.
WSAGetLastError() allows you to retrieve an error code on a per thread basis.

WSAGetLastError() returns error codes which avoid conflict with standard Microsoft
C error codes. Certain error codes returned by certain Windows Sockets routines fall
into the standard range of error codes as defined by Microsoft C. If you are NOT
using an application development environment which defines error codes consistent
with Microsoft C, you are advised to use the Windows Sockets error codes prefixed by
"WSA" to ensure accurate error code detection.

Note that this specification defines a recommended set of error codes, and lists the
possible errors which may be returned as a result of each function. It may be the
case in some implementations that other Windows Sockets error codes will be
returned in addition to those listed, and applications should be prepared to handle
errors other than those enumerated under each API description. However a Windows
Sockets implementation must not return any value which is not enumerated in the
table of legal Windows Sockets errors given in Appendix A.1.

3.3.5 Accessing a Windows Sockets DLL from an Intermediate
DLL
A Windows Sockets DLL may be accessed both directly from an application and
through an "intermediate" DLL. An example of such an intermediate DLL would be a
virtual network API layer that supports generalized network functionality for
applications and uses Windows Sockets. Such a DLL could be used by several

24

applications simultaneously, and the DLL must take special precautions with respect
to the WSAStartup() and WSACleanup() calls to ensure that these routines are
called in the context of each task that will make Windows Sockets calls. This is
because the Windows Sockets DLL will need a call to WSAStartup() for each task in
order to set up task-specific data structures, and a call to WSACleanup() to free any
resources allocated for the task.

There are (at least) two ways to accomplish this. The simplest method is for the
intermediate DLL to have calls similar to WSAStartup() and WSACleanup() that
applications call as appropriate. The DLL would then call WSAStartup() or
WSACleanup() from within these routines. Another mechanism is for the
intermediate DLL to build a table of task handles, which are obtained from the
GetCurrentTask() Windows API, and at each entry point into the intermediate DLL
check whether WSAStartup() has been called for the current task, then call
WSAStartup() if necessary.

If a DLL makes a blocking call and does not install its own blocking hook, then the
DLL author must be aware that control may be returned to the application either by
an application-installed blocking hook or by the default blocking hook. Thus, it is
possible that the application will cancel the DLL's blocking operation via
WSACancelBlockingCall(). If this occurs, the DLL's blocking operation will fail with
the error code WSAEINTR, and the DLL must return control to the calling task as
quickly as possible, as the used has likely pressed a cancel or close button and the
task has requested control of the CPU. It is recommended that DLLs which make
blocking calls install their own blocking hooks with WSASetBlockingHook() to
prevent unforeseen interactions between the application and the DLL.

Note that this is not necessary for DLLs in Windows NT because of its different
process and DLL structure. Under Windows NT, the intermediate DLL could simply
call WSAStartup() in its DLL initialization routine, which is called whenever a new
process which uses the DLL starts.

3.3.6 Internal use of Messages by Windows Sockets
Implementations
In order to implement Windows Sockets purely as a DLL, it may be necessary for the
DLL to post messages internally for communication and timing. This is perfectly
legal; however, a Windows Sockets DLL must not post messages to a window handle
opened by a client application except for those messages requested by the
application. A Windows Sockets DLL that needs to use messages for its own
purposes must open a hidden window and post any necessary messages to the
handle for that window.

3.3.7 Private API Interfaces
The winsock.def file in Appendix B.7 lists the ordinals defined for the Windows
Sockets APIs. In addition to the ordinal values listed, all ordinals 999 and below are
reserved for future Windows Sockets use. It may be convenient for a Windows
Sockets implementation to export additional, private interfaces from the Windows
Sockets DLL. This is perfectly acceptable, as long as the ordinals for these exports
are above 1000. Note that any application that uses a particular Windows Sockets
DLL's private APIs will most likely not work on any other vendor's Windows Sockets
implementation. Only the APIs defined in this document are guaranteed to be
present in every Windows Sockets implementation.

25

If an application uses private interfaces of a particular vendor's Windows Sockets
DLL, it is recommended that the DLL not be statically linked with the application but
rather dynamically loaded with the Windows routines LoadLibrary() and
GetProcAddress(). This allows the application to give an informative error message
if it is run on a system with a Windows Sockets DLL that does not support the same
set of extended functionality.

26

4. SOCKET LIBRARY REFERENCE
4.1 Socket Routines
This chapter presents the socket library routines in alphabetical order, and describes
each routine in detail.

In each routine it is indicated that the header file winsock.h must be included.
Appendix A.2 lists the Berkeley-compatible header files which are supported. These
are provided for compatibility purposes only, and each of them will simply include
winsock.h. The Windows header file windows.h is also needed, but winsock.h will
include it if necessary.

27

4.1.1 accept()
Description Accept a connection on a socket.

#include <winsock.h>

SOCKET PASCAL FAR accept (SOCKET s, struct sockaddr FAR *
addr,
int FAR * addrlen);

s A descriptor identifying a socket which is listening for
connections after a listen().

addr An optional pointer to a buffer which receives the
address of the connecting entity, as known to the
communications layer. The exact format of the addr
argument is determined by the address family
established when the socket was created.

addrlen An optional pointer to an integer which contains the
length of the address addr.

Remarks This routine extracts the first connection on the queue of pending
connections on s, creates a new socket with the same properties as s
and returns a handle to the new socket. If no pending connections are
present on the queue, and the socket is not marked as non-blocking,
accept() blocks the caller until a connection is present. If the socket is
marked non-blocking and no pending connections are present on the
queue, accept() returns an error as described below. The accepted
socket may not be used to accept more connections. The original
socket remains open.

The argument addr is a result parameter that is filled in with the
address of the connecting entity, as known to the communications
layer. The exact format of the addr parameter is determined by the
address family in which the communication is occurring. The addrlen is
a value-result parameter; it should initially contain the amount of
space pointed to by addr; on return it will contain the actual length (in
bytes) of the address returned. This call is used with connection-based
socket types such as SOCK_STREAM. If addr and/or addrlen are equal
to NULL, then no information about the remote address of the accepted
socket is returned.

Return Value If no error occurs, accept()
returns a value of type SOCKET which is a descriptor for the accepted
packet. Otherwise, a value of INVALID_SOCKET is returned, and a
specific error code may be retrieved by calling WSAGetLastError().

The integer referred to by addrlen initially contains the amount of
space pointed to by addr. On return it will contain the actual length in
bytes of the address returned.

Error Codes WSANOTINITIALISED
28

A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAEFAULT The addrlen argument is too small (less
than the sizeof a struct sockaddr).

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall().

WSAEINPROGRESS A blocking Windows Sockets call is in
progress.

WSAEINVAL listen() was not invoked prior to
accept().

WSAEMFILE The queue is empty upon entry to
accept() and there are no descriptors
available.

WSAENOBUFS No buffer space is available.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP The referenced socket is not a type that
supports connection-oriented service.

WSAEWOULDBLOCK The socket is marked as non-blocking and
no connections are present to be
accepted.

See Also bind(), connect(), listen(), select(), socket(), WSAAsyncSelect()

29

4.1.2 bind()
Description Associate a local address with a socket.

#include <winsock.h>

int PASCAL FAR bind (SOCKET s, const struct sockaddr FAR *
name, int namelen);

s A descriptor identifying an unbound socket.

name The address to assign to the socket. The sockaddr
structure is defined as follows:

struct sockaddr {
u_short

sa_family;
char

sa_data[14];
};

namelen The length of the name.

Remarks This routine is used on an unconnected datagram or stream socket,
before subsequent connect()s or listen()s. When a socket is created
with socket(), it exists in a name space (address family), but it has no
name assigned. bind() establishes the local association (host
address/port number) of the socket by assigning a local name to an
unnamed socket.

In the Internet address family, a name consists of several components.
For SOCK_DGRAM and SOCK_STREAM, the name consists of three
parts: a host address, the protocol number (set implicitly to UDP or
TCP, respectively), and a port number which identifies the application.
If an application does not care what address is assigned to it, it may
specify an Internet address equal to INADDR_ANY, a port equal to 0, or
both. If the Internet address is equal to INADDR_ANY, any appropriate
network interface will be used; this simplifies application programming
in the presence of multi-homed hosts. If the port is specified as 0, the
Windows Sockets implementation will assign a unique port to the
application with a value between 1024 and 5000. The application may
use getsockname() after bind() to learn the address that has been
assigned to it, but note that getsockname() will not necessarily fill in
the Internet address until the socket is connected, since several
Internet addresses may be valid if the host is multi-homed.

If an application desires to bind to an arbitrary port outside of the
range 1024 to 5000, such as the case of rsh which must bind to any
reserved port, code similar to the following may be used:

 SOCKADDR_IN sin;
 SOCKET s;
 u_short alport = IPPORT_RESERVED;

30

 sin.sin_family = AF_INET;
 sin.sin_addr.s_addr = 0;
 for (;;) {
 sin.sin_port = htons(alport);
 if (bind(s, (LPSOCKADDR)&sin, sizeof (sin)) == 0) {
 /* it worked */
 }
 if (GetLastError() != WSAEADDRINUSE) {
 /* fail */
 }
 alport--;
 if (alport == IPPORT_RESERVED/2) {
 /* fail--all unassigned reserved ports are */
 /* in use. */
 }
 }

Return Value If no error occurs, bind()
returns 0. Otherwise, it returns SOCKET_ERROR, and a specific error
code may be retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED

A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAEADDRINUSE The specified address is already in use.
(See the SO_REUSEADDR socket option
under setsockopt().)

WSAEFAULT The namelen argument is too small (less
than the size of a struct sockaddr).

WSAEINPROGRESS A blocking Windows Sockets call is in
progress.

WSAEAFNOSUPPORT The specified address family is not
supported by this protocol.

WSAEINVAL The socket is already bound to an address.

WSAENOBUFS Not enough buffers available, too many
connections.

WSAENOTSOCK The descriptor is not a socket.

31

See Also connect(), listen(), getsockname(), setsockopt(), socket(),
WSACancelBlockingCall().

32

4.1.3 closesocket()
Description Close a socket.

#include <winsock.h>

int PASCAL FAR closesocket (SOCKET s);

s A descriptor identifying a socket.

Remarks This function closes a socket. More precisely, it releases the socket
descriptor s, so that further references to s will fail with the error
WSAENOTSOCK. If this is the last reference to the underlying socket,
the associated naming information and queued data are discarded.

The semantics of closesocket() are affected by the socket options
SO_LINGER and SO_DONTLINGER as follows:

Option Interval
Type of close Wait for
close?

SO_DONTLINGER Don't care
Graceful
No

SO_LINGER Zero
Hard
No

SO_LINGER Non-zero
Graceful
Yes

If SO_LINGER is set (i.e. the l_onof field of the linger structure is non-
zero; see sections , and) with a zero timeout interval (l_linger is zero),
closesocket() is not blocked even if queued data has not yet been
sent or acknowledged. This is called a "hard" or "abortive" close,
because the socket's virtual circuit is reset immediately, and any
unsent data is lost. Any recv() call on the remote side of the circuit
will fail with WSAECONNRESET.

If SO_LINGER is set with a non-zero timeout interval, the
closesocket() call blocks until the remaining data has been sent or
until the timeout expires. This is called a graceful disconnect. Note
that if the socket is set to non-blocking and SO_LINGER is set to a non-
zero timeout, the call to closesocket() will fail with an error of
WSAEWOULDBLOCK.

If SO_DONTLINGER is set on a stream socket (i.e. the l_onoff field of the
linger structure is zero; see sections , and), the closesocket() call
will return immediately. However, any data queued for transmission
will be sent if possible before the underlying socket is closed. This is
also called a graceful disconnect. Note that in this case the Windows
Sockets implementation may not release the socket and other
resources for an arbitrary period, which may affect applications which
expect to use all available sockets.

33

Return Value If no error occurs,
closesocket() returns 0. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling
WSAGetLastError().

Error Codes WSANOTINITIALISED

A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAENOTSOCK The descriptor is not a socket.

WSAEINPROGRESS A blocking Windows Sockets call is in
progress.

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall().

WSAEWOULDBLOCK The socket is marked as nonblocking and
SO_LINGER is set to a nonzero timeout
value.

See Also accept(), socket(), ioctlsocket(), setsockopt(),
WSAAsyncSelect().

34

4.1.4 connect()
Description Establish a connection to a peer.

#include <winsock.h>

int PASCAL FAR connect (SOCKET s, const struct sockaddr FAR
* name,
int namelen);

s A descriptor identifying an unconnected socket.

name The name of the peer to which the socket is to be
connected.

namelen The length of the name.

Remarks This function is used to create a connection to the specified foreign
association. The parameter s specifies an unconnected datagram or
stream socket If the socket is unbound, unique values are assigned to
the local association by the system, and the socket is marked as
bound. Note that if the address field of the name structure is all
zeroes, connect() will return the error WSAEADDRNOTAVAIL.

For stream sockets (type SOCK_STREAM), an active connection is
initiated to the foreign host using name (an address in the name space
of the socket). When the socket call completes successfully, the socket
is ready to send/receive data.

For a datagram socket (type SOCK_DGRAM), a default destination is
set, which will be used on subsequent send() and recv() calls.

Return Value If no error occurs,
connect() returns 0. Otherwise, it returns SOCKET_ERROR, and a
specific error code may be retrieved by calling WSAGetLastError().

On a blocking socket, the return value indicates success or failure of
the connection attempt.

On a non-blocking socket, if the return value is SOCKET_ERROR an
application should call WSAGetLastError(). If this indicates an error
code of WSAEWOULDBLOCK, then your application can either:

1. Use select() to determine the completion of the connection request
by checking if the socket is writeable, or

2. If your application is using the message-based WSAAsyncSelect()
to indicate interest in connection events, then your application will
receive an FD_CONNECT message when the connect operation is
complete.

Error Codes WSANOTINITIALISED

35

A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAEADDRINUSE The specified address is already in use.

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall().

WSAEINPROGRESS A blocking Windows Sockets call is in
progress.

WSAEADDRNOTAVAIL The specified address is not available from
the local machine.

WSAEAFNOSUPPORT Addresses in the specified family cannot
be used with this socket.

WSAECONNREFUSED The attempt to connect was forcefully
rejected.

WSAEDESTADDREQ A destination address is required.

WSAEFAULT The namelen argument is incorrect.

WSAEINVAL The socket is not already bound to an
address.

WSAEISCONN The socket is already connected.

WSAEMFILE No more file descriptors are available.

WSAENETUNREACH The network can't be reached from this
host at this time.

WSAENOBUFS No buffer space is available. The socket
cannot be connected.

WSAENOTSOCK The descriptor is not a socket.

WSAETIMEDOUT Attempt to connect timed out without
establishing a connection

WSAEWOULDBLOCK The socket is marked as non-blocking and
the connection cannot be completed
immediately. It is possible to select() the
socket while it is connecting by
select()ing it for writing.

See Also accept(), bind(), getsockname(), socket(), select() and
WSAAsyncSelect()..

36

4.1.5 getpeername()
Description Get the address of the peer to which a socket is connected.

#include <winsock.h>

int PASCAL FAR getpeername (SOCKET s, struct sockaddr FAR *
name, int FAR * namelen);

s A descriptor identifying a connected socket.

name The structure which is to receive the name of the peer.

namelen A pointer to the size of the name structure.

Remarks getpeername() retrieves the name of the peer connected to the
socket s and stores it in the struct sockaddr identified by name. It is
used on a connected datagram or stream socket.

On return, the namelen argument contains the actual size of the name
returned in bytes.

Return Value If no error occurs,
getpeername() returns 0. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling
WSAGetLastError().

Error Codes WSANOTINITIALISED

A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAEFAULT The namelen argument is not large
enough.

WSAEINPROGRESS A blocking Windows Sockets call is in
progress.

WSAENOTCONN The socket is not connected.

WSAENOTSOCK The descriptor is not a socket.

See Also bind(), socket(), getsockname().

37

4.1.6 getsockname()
Description Get the local name for a socket.

#include <winsock.h>

int PASCAL FAR getsockname (SOCKET s, struct sockaddr FAR *
name,
int FAR * namelen);

s A descriptor identifying a bound socket.

name Receives the address (name) of the socket.

namelen The size of the name buffer.

Remarks getsockname() retrieves the current name for the specified socket
descriptor in name. It is used on a bound and/or connected socket
specified by the s parameter. The local association is returned. This
call is especially useful when a connect() call has been made without
doing a bind() first; this call provides the only means by which you can
determine the local association which has been set by the system.

On return, the namelen argument contains the actual size of the name
returned in bytes.

If a socket was bound to INADDR_ANY, indicating that any of the host's
IP addresses should be used for the socket, getsockname() will not
necessarily return information about the host IP address, unless the
socket has been connected with connect() or accept(). A Windows
Sockets application must not assume that the IP address will be
changed from INADDR_ANY unless the socket is connected. This is
because for a multi-homed host the IP address that will be used for the
socket is unknown unless the socket is connected.

Return Value If no error occurs,
getsockname() returns 0. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling
WSAGetLastError().

Error Codes WSANOTINITIALISED

A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAEFAULT The namelen argument is not large
enough.

WSAEINPROGRESS A blocking Windows Sockets operation is
in progress.

38

WSAENOTSOCK The descriptor is not a socket.

WSAEINVAL The socket has not been bound to an
address with bind().

See Also bind(), socket(), getpeername().

39

4.1.7 getsockopt()
Description Retrieve a socket option.

#include <winsock.h>

int PASCAL FAR getsockopt (SOCKET s, int level, int optname,
char FAR * optval, int FAR * optlen);

s A descriptor identifying a socket.

level The level at which the option is defined; the only
supported levels are SOL_SOCKET and IPPROTO_TCP.

optname The socket option for which the value is to be retrieved.

optval A pointer to the buffer in which the value for the
requested option is to be returned.

optlen A pointer to the size of the optval buffer.

Remarks getsockopt() retrieves the current value for a socket option
associated with a socket of any type, in any state, and stores the result
in optval. Options may exist at multiple protocol levels, but they are
always present at the uppermost "socket'' level. Options affect socket
operations, such as whether an operation blocks or not, the routing of
packets, out-of-band data transfer, etc.

The value associated with the selected option is returned in the buffer
optval. The integer pointed to by optlen should originally contain the
size of this buffer; on return, it will be set to the size of the value
returned. For SO_LINGER, this will be the size of a struct linger; for all
other options it will be the size of an integer.

If the option was never set with setsockopt(), then getsockopt()
returns the default value for the option.

The following options are supported for getsockopt(). The Type
identifies the type of data addressed by optval. The TCP_NODELAY
option uses level IPPROTO_TCP; all other options use level
SOL_SOCKET.

Value
Type
Meaning

SO_ACCEPTCONN
BOOL
Socket is listen()ing.

SO_BROADCAST
BOOL
Socket is configured for the transmission of broadcast messages.

SO_DEBUG
BOOL
Debugging is enabled.

40

SO_DONTLINGER
BOOL
If true, the SO_LINGER option is disabled.

SO_DONTROUTE
BOOL
Routing is disabled.

SO_ERROR
int
Retrieve error status and clear.

SO_KEEPALIVE
BOOL
Keepalives are being sent.

SO_LINGER
struct linger FAR *
Returns the current linger options.

SO_OOBINLINE
BOOL
Out-of-band data is being received in the normal data stream.

SO_RCVBUF
int
Buffer size for receives

SO_REUSEADDR
BOOL
The socket may be bound to an address which is already in use.

SO_SNDBUF
int
Buffer size for sends

SO_TYPE
int
The type of the socket (e.g. SOCK_STREAM).

TCP_NODELAY
BOOL
Disables the Nagle algorithm for send coalescing.

BSD options not supported for getsockopt() are:

Value
Type
Meaning

SO_RCVLOWAT
int
Receive low water mark

SO_RCVTIMEO
int
Receive timeout

SO_SNDLOWAT
int
Send low water mark

SO_SNDTIMEO
int
Send timeout

IP_OPTIONS

Get options in IP header.
41

TCP_MAXSEG
int
Get TCP maximum segment size.

Calling getsockopt() with an unsupported option will result in an error
code of WSAENOPROTOOPT being returned from WSAGetLastError().

Return Value If no error occurs,
getsockopt() returns 0. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling
WSAGetLastError().

Error Codes WSANOTINITIALISED

A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAEFAULT The optlen argument was invalid.

WSAEINPROGRESS A blocking Windows Sockets operation is
in progress.

WSAENOPROTOOPT The option is unknown or unsupported. In
particular, SO_BROADCAST is not
supported on sockets of type
SOCK_STREAM, while SO_ACCEPTCONN,
SO_DONTLINGER, SO_KEEPALIVE,
SO_LINGER and SO_OOBINLINE are not
supported on sockets of type
SOCK_DGRAM.

WSAENOTSOCK The descriptor is not a socket.

See Also setsockopt(), WSAAsyncSelect(), socket().

42

4.1.8 htonl()
Description Convert a u_long from host to network byte order.

#include <winsock.h>

u_long PASCAL FAR htonl (u_long hostlong);

hostlong A 32-bit number in host byte order.

Remarks This routine takes a 32-bit number in host byte order and returns a 32-
bit number in network byte order.

Return Value htonl() returns the value in
network byte order.

See Also htons(), ntohl(), ntohs().

43

4.1.9 htons()
Description Convert a u_short from host to network byte order.

#include <winsock.h>

u_short PASCAL FAR htons (u_short hostshort);

hostshort A 16-bit number in host byte order.

Remarks This routine takes a 16-bit number in host byte order and returns a 16-
bit number in network byte order.

Return Value htons() returns the value in
network byte order.

See Also htonl(), ntohl(), ntohs().

44

4.1.10 inet_addr()
Description Convert a string containing a dotted address into an in_addr.

#include <winsock.h>

unsigned long PASCAL FAR inet_addr (const char FAR * cp);

cp A character string representing a number expressed in
the Internet standard ".'' notation.

Remarks This function interprets the character string specified by the cp
parameter. This string represents a numeric Internet address
expressed in the Internet standard ".'' notation. The value returned is
a number suitable for use as an Internet address. All Internet
addresses are returned in network order (bytes ordered from left to
right).

Internet Addresses

Values specified using the ".'' notation take one of the following forms:

a.b.c.d a.b.c
a.b a

When four parts are specified, each is interpreted as a byte of data and
assigned, from left to right, to the four bytes of an Internet address.
Note that when an Internet address is viewed as a 32-bit integer
quantity on the Intel architecture, the bytes referred to above appear
as "d.c.b.a''. That is, the bytes on an Intel processor are ordered from
right to left.

Note: The following notations are only used by Berkeley, and nowhere
else on the Internet. In the interests of compatibility with their
software, they are supported as specified.

When a three part address is specified, the last part is interpreted as a
16-bit quantity and placed in the right most two bytes of the network
address. This makes the three part address format convenient for
specifying Class B network addresses as "128.net.host''.

When a two part address is specified, the last part is interpreted as a
24-bit quantity and placed in the right most three bytes of the network
address. This makes the two part address format convenient for
specifying Class A network addresses as "net.host''.

When only one part is given, the value is stored directly in the network
address without any byte rearrangement.

Return Value If no error occurs,
inet_addr() returns an unsigned long containing a suitable binary
representation of the Internet address given. If the passed-in string
does not contain a legitimate Internet address, for example if a portion

45

of an "a.b.c.d" address exceeds 255, inet_addr() returns the value
INADDR_NONE.

See Also inet_ntoa()

46

4.1.11 inet_ntoa()
Description Convert a network address into a string in dotted format.

#include <winsock.h>

char FAR * PASCAL FAR inet_ntoa (struct in_addr in);

in A structure which represents an Internet host address.

Remarks This function takes an Internet address structure specified by the in
parameter. It returns an ASCII string representing the address in ".''
notation as "a.b.c.d''. Note that the string returned by inet_ntoa()
resides in memory which is allocated by the Windows Sockets
implementation. The application should not make any assumptions
about the way in which the memory is allocated. The data is
guaranteed to be valid until the next Windows Sockets API call within
the same thread, but no longer.

Return Value If no error occurs,
inet_ntoa() returns a char pointer to a static buffer containing the text
address in standard ".'' notation. Otherwise, it returns NULL. The data
should be copied before another Windows Sockets call is made.

See Also inet_addr().

47

4.1.12 ioctlsocket()
Description Control the mode of a socket.

#include <winsock.h>

int PASCAL FAR ioctlsocket (SOCKET s, long cmd, u_long FAR *
argp);

s A descriptor identifying a socket.

cmd The command to perform on the socket s.

argp A pointer to a parameter for cmd.

Remarks This routine may be used on any socket in any state. It is used to get
or retrieve operating parameters associated with the socket,
independent of the protocol and communications subsystem. The
following commands are supported:

Command Semantics

FIONBIO Enable or disable non-blocking mode on the socket s.
argp points at an unsigned long, which is non-zero if
non-blocking mode is to be enabled and zero if it is to be
disabled. When a socket is created, it operates in
blocking mode (i.e. non-blocking mode is disabled). This
is consistent with BSD sockets.

The WSAAsyncSelect() routine automatically sets a
socket to nonblocking mode. If WSAAsyncSelect() has
been issued on a socket, then any attempt to use
ioctlsocket() to set the socket back to blocking mode
will fail with WSAEINVAL. To set the socket back to
blocking mode, an application must first disable
WSAAsyncSelect() by calling WSAAsyncSelect() with
the lEvent parameter equal to 0.

FIONREAD Determine the amount of data which can be read
atomically from socket s. argp points at an unsigned
long in which ioctlsocket() stores the result. If s is of
type SOCK_STREAM, FIONREAD returns the total amount
of data which may be read in a single recv(); this is
normally the same as the total amount of data queued
on the socket. If s is of type SOCK_DGRAM, FIONREAD
returns the size of the first datagram queued on the
socket.

SIOCATMARK Determine whether or not all out-of-band data has been
read. This applies only to a socket of type
SOCK_STREAM which has been configured for in-line
reception of any out-of-band data (SO_OOBINLINE). If no
out-of-band data is waiting to be read, the operation
returns TRUE. Otherwise it returns FALSE, and the next

48

recv() or recvfrom() performed on the socket will
retrieve some or all of the data preceding the "mark";
the application should use the SIOCATMARK operation to
determine whether any remains. If there is any normal
data preceding the "urgent" (out of band) data, it will be
received in order. (Note that a recv() or recvfrom() will
never mix out-of-band and normal data in the same call.)
argp points at a BOOL in which ioctlsocket() stores the
result.

Compatibility This function is a subset of
ioctl() as used in Berkeley sockets. In particular, there is no command
which is equivalent to FIOASYNC, while SIOCATMARK is the only socket-
level command which is supported.

Return Value Upon successful completion,
the ioctlsocket() returns 0. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling
WSAGetLastError().

Error Codes WSANOTINITIALISED

A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAEINVAL cmd is not a valid command, or argp is not
an acceptable parameter for cmd, or the
command is not applicable to the type of
socket supplied

WSAEINPROGRESS A blocking Windows Sockets operation is
in progress.

WSAENOTSOCK The descriptor s is not a socket.

See Also socket(), setsockopt(), getsockopt(), WSAAsyncSelect().

49

4.1.13 listen()
Description Establish a socket to listen for incoming connection.

#include <winsock.h>

int PASCAL FAR listen (SOCKET s, int backlog);

s A descriptor identifying a bound, unconnected socket.

backlog The maximum length to which the queue of pending
connections may grow.

Remarks To accept connections, a socket is first created with socket(), a
backlog for incoming connections is specified with listen(), and then
the connections are accepted with accept(). listen() applies only to
sockets that support connections, i.e. those of type SOCK_STREAM.
The socket s is put into "passive'' mode where incoming connections
are acknowledged and queued pending acceptance by the process.

This function is typically used by servers that could have more than
one connection request at a time: if a connection request arrives with
the queue full, the client will receive an error with an indication of
WSAECONNREFUSED.

listen() attempts to continue to function rationally when there are no
available descriptors. It will accept connections until the queue is
emptied. If descriptors become available, a later call to listen() or
accept() will re-fill the queue to the current or most recent "backlog'',
if possible, and resume listening for incoming connections.

Compatibility backlog is currently limited
(silently) to 5. As in 4.3BSD, illegal values (less than 1 or greater than
5) are replaced by the nearest legal value.

Return Value If no error occurs, listen()
returns 0. Otherwise, a value of SOCKET_ERROR is returned, and a
specific error code may be retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED

A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAEADDRINUSE An attempt has been made to listen() on
an address in use.

WSAEINPROGRESS A blocking Windows Sockets operation is
in progress.

WSAEINVAL The socket has not been bound with
50

bind() or is already connected.

WSAEISCONN The socket is already connected.

WSAEMFILE No more file descriptors are available.

WSAENOBUFS No buffer space is available.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP The referenced socket is not of a type that
supports the listen() operation.

See Also accept(), connect(), socket().

51

4.1.14 ntohl()
Description Convert a u_long from network to host byte order.

#include <winsock.h>

u_long PASCAL FAR ntohl (u_long netlong);

netlong A 32-bit number in network byte order.

Remarks This routine takes a 32-bit number in network byte order and returns a
32-bit number in host byte order.

Return Value ntohl() returns the value in
host byte order.

See Also htonl(), htons(), ntohs().

52

4.1.15 ntohs()
Description Convert a u_short from network to host byte order.

#include <winsock.h>

u_short PASCAL FAR ntohs (u_short netshort);

netshort A 16-bit number in network byte order.

Remarks This routine takes a 16-bit number in network byte order and returns a
16-bit number in host byte order.

Return Value ntohs() returns the value in
host byte order.

See Also htonl(), htons(), ntohl().

53

Description Receive data from a socket.

#include <winsock.h>

int PASCAL FAR recv (SOCKET s, char FAR * buf, int len, int flags
);

s A descriptor identifying a connected socket.

buf A buffer for the incoming data.

len The length of buf.

flags Specifies the way in which the call is made.

Remarks This function is used on connected datagram or stream sockets
specified by the s parameter and is used to read incoming data.

For sockets of type SOCK_STREAM, as much information as is currently
available up to the size of the buffer supplied is returned. If the socket
has been configured for in-line reception of out-of-band data (socket
option SO_OOBINLINE) and out-of-band data is unread, only out-of-
band data will be returned. The application may use the ioctlsocket()
SIOCATMARK to determine whether any more out-of-band data remains
to be read.

For datagam sockets, data is extracted from the first enqueued
datagram, up to the size of the buffer supplied. If the datagram is
larger than the buffer supplied, the buffer is filled with the first part of
the datagram, the excess data is lost, and recv() returns the error
WSAEMSGSIZE.

If no incoming data is available at the socket, the recv() call waits for
data to arrive unless the socket is non-blocking. In this case a value of
SOCKET_ERROR is returned with the error code set to
WSAEWOULDBLOCK. The select() or WSAAsyncSelect() calls may be
used to determine when more data arrives.

If the socket is of type SOCK_STREAM and the remote side has shut
down the connection gracefully, a recv() will complete immediately
with 0 bytes received. If the connection has been reset, a recv() will
fail with the error WSAECONNRESET.

Flags may be used to influence the behavior of the function invocation
beyond the options specified for the associated socket. That is, the
semantics of this function are determined by the socket options and
the flags parameter. The latter is constructed by or-ing any of the
following values:

Value Meaning
MSG_PEEK Peek at the incoming data. The data is copied into the

buffer but is not removed from the input queue.

54

MSG_OOB Process out-of-band data (See section for a discussion of
this topic.)

Return Value If no error occurs, recv()
returns the number of bytes received. If the connection has been
closed, it returns 0. Otherwise, a value of SOCKET_ERROR is returned,
and a specific error code may be retrieved by calling
WSAGetLastError().

Error Codes WSANOTINITIALISED

A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAENOTCONN The socket is not connected.

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall().

WSAEINPROGRESS A blocking Windows Sockets operation is
in progress.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is
not of type SOCK_STREAM.

WSAESHUTDOWN The socket has been shutdown; it is not
possible to recv() on a socket after
shutdown() has been invoked with how
set to 0 or 2.

WSAEWOULDBLOCK The socket is marked as non-blocking and
the receive operation would block.

WSAEMSGSIZE The datagram was too large to fit into the
specified buffer and was truncated.

WSAEINVAL The socket has not been bound with
bind().

WSAECONNABORTED The virtual circuit was aborted due to
timeout or other failure.

WSAECONNRESET The virtual circuit was reset by the remote
side.

See Also recvfrom(), read(), ,recv(), send(), select(), WSAAsyncSelect(),
55

socket()

56

4.1.17 recvfrom()
Description Receive a datagram and store the source address.

#include <winsock.h>

int PASCAL FAR recvfrom (SOCKET s, char FAR * buf, int len, int
flags,
struct sockaddr FAR * from, int FAR * fromlen);

s A descriptor identifying a bound socket.

buf A buffer for the incoming data.

len The length of buf.

flags Specifies the way in which the call is made.

from An optional pointer to a buffer which will hold the source
address upon return.

fromlen An optional pointer to the size of the from buffer.

Remarks This function is used to read incoming data on a (possibly connected)
socket and capture the address from which the data was sent.

For sockets of type SOCK_STREAM, as much information as is currently
available up to the size of the buffer supplied is returned. If the socket
has been configured for in-line reception of out-of-band data (socket
option SO_OOBINLINE) and out-of-band data is unread, only out-of-
band data will be returned. The application may use the ioctlsocket()
SIOCATMARK to determine whether any more out-of-band data remains
to be read. The from and fromlen parameters are ignored for
SOCK_STREAM sockets.

For datagram sockets, data is extracted from the first enqueued
datagram, up to the size of the buffer supplied. If the datagram is
larger than the buffer supplied, the buffer is filled with the first part of
the message, the excess data is lost, and recvfrom() returns the error
code WSAEMSGSIZE.

If from is non-zero, and the socket is of type SOCK_DGRAM, the
network address of the peer which sent the data is copied to the
corresponding struct sockaddr. The value pointed to by fromlen is
initialized to the size of this structure, and is modified on return to
indicate the actual size of the address stored there.

If no incoming data is available at the socket, the recvfrom() call
waits for data to arrive unless the socket is non-blocking. In this case a
value of SOCKET_ERROR is returned with the error code set to
WSAEWOULDBLOCK. The select() or WSAAsyncSelect() calls may be
used to determine when more data arrives.

If the socket is of type SOCK_STREAM and the remote side has shut
57

down the connection gracefully, a recvfrom() will complete
immediately with 0 bytes received. If the connection has been reset
recv() will fail with the error WSAECONNRESET.

Flags may be used to influence the behavior of the function invocation
beyond the options specified for the associated socket. That is, the
semantics of this function are determined by the socket options and
the flags parameter. The latter is constructed by or-ing any of the
following values:

Value Meaning
MSG_PEEK Peek at the incoming data. The data is copied into the

buffer but is not removed from the input queue.

MSG_OOB Process out-of-band data (See section for a discussion of
this topic.)

Return Value If no error occurs,
recvfrom() returns the number of bytes received. If the connection
has been closed, it returns 0. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling
WSAGetLastError().

Error Codes WSANOTINITIALISED

A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAEFAULT The fromlen argument was invalid: the
from buffer was too small to
accommodate the peer address.

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall().

WSAEINPROGRESS A blocking Windows Sockets operation is
in progress.

WSAEINVAL The socket has not been bound with
bind().

WSAENOTCONN The socket is not connected
(SOCK_STREAM only).

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is
not of type SOCK_STREAM.

58

WSAESHUTDOWN The socket has been shutdown; it is not
possible to recvfrom() on a socket after
shutdown() has been invoked with how
set to 0 or 2.

WSAEWOULDBLOCK The socket is marked as non-blocking and
the recvfrom() operation would block.

WSAEMSGSIZE The datagram was too large to fit into the
specified buffer and was truncated.

WSAECONNABORTED The virtual circuit was aborted due to
timeout or other failure.

WSAECONNRESET The virtual circuit was reset by the remote
side.

See Also recv(), send(), socket(), WSAAsyncSelect().

59

4.1.18 select()
Description Determine the status of one or more sockets, waiting if necessary.

#include <winsock.h>

int PASCAL FAR select (int nfds, fd_set FAR * readfds, fd_set FAR
* writefds,

fd_set FAR * exceptfds, const struct timeval FAR * timeout);

nfds This argument is ignored and included only for the sake
of compatibility.

readfds An optional pointer to a set of sockets to be checked for
readability.

writefds An optional pointer to a set of sockets to be checked for
writability

exceptfds An optional pointer to a set of sockets to be checked for
errors.

timeout The maximum time for select() to wait, or NULL for
blocking operation.

Remarks This function is used to determine the status of one or more sockets.
For each socket, the caller may request information on read, write or
error status. The set of sockets for which a given status is requested is
indicated by an fd_set structure. Upon return, the structure is updated
to reflect the subset of these sockets which meet the specified
condition, and select() returns the number of sockets meeting the
conditions. A set of macros is provided for manipulating an fd_set.
These macros are compatible with those used in the Berkeley software,
but the underlying representation is completely different.

The parameter readfds identifies those sockets which are to be
checked for readability. If the socket is currently listen()ing, it will be
marked as readable if an incoming connection request has been
received, so that an accept() is guaranteed to complete without
blocking. For other sockets, readability means that queued data is
available for reading or, for sockets of type SOCK_STREAM, that the
virtual socket corresponding to the socket has been closed, so that a
recv() or recvfrom() is guaranteed to complete without blocking. If
the virtual circuit was closed gracefully, then a recv() will return
immediately with 0 bytes read; if the virtual circuit was reset, then a
recv() will complete immediately with the error code
WSAECONNRESET. The presence of out-of-band data will be checked if
the socket option SO_OOBINLINE has been enabled (see
setsockopt()).

The parameter writefds identifies those sockets which are to be
checked for writability. If a socket is connect()ing (non-blocking),
writability means that the connection establishment successfully
completed. If the socket is not in the process of connect()ing,

60

writability means that a send() or sendto() will complete without
blocking. [It is not specified how long this guarantee can be assumed
to be valid, particularly in a multithreaded environment.]

The parameter exceptfds identifies those sockets which are to be
checked for the presence of out-of-band data or any exceptional error
conditions. Note that out-of-band data will only be reported in this way
if the option SO_OOBINLINE is FALSE. For a SOCK_STREAM, the
breaking of the connection by the peer or due to KEEPALIVE failure will
be indicated as an exception. This specification does not define which
other errors will be included. If a socket is connect()ing (non-
blocking), failure of the connect attempt is indicated in exceptfds.

Any of readfds, writefds, or exceptfds may be given as NULL if no
descriptors are of interest.

Four macros are defined in the header file winsock.h for manipulating
the descriptor sets. The variable FD_SETSIZE determines the
maximum number of descriptors in a set. (The default value of
FD_SETSIZE is 64, which may be modified by #defining FD_SETSIZE to
another value before #including winsock.h.) Internally, an fd_set is
represented as an array of SOCKETs; the last valid entry is followed by
an element set to INVALID_SOCKET. The macros are:

FD_CLR(s, *set) Removes the
descriptor s from set.

FD_ISSET(s, *set) Nonzero if s is
a member of the set, zero otherwise.

FD_SET(s, *set)
Adds descriptor s to set.

FD_ZERO(*set)
Initializes the set to the NULL set.

The parameter timeout controls how long the select() may take to
complete. If timeout is a null pointer, select() will block indefinitely
until at least one descriptor meets the specified criteria. Otherwise,
timeout points to a struct timeval which specifies the maximum time
that select() should wait before returning. If the timeval is initialized
to {0, 0}, select() will return immediately; this is used to "poll" the
state of the selected sockets. If this is the case, then the select() call
is considered nonblocking and the standard assumptions for
nonblocking calls apply. For example, the blocking hook must not be
called, and the Windows Sockets implementation must not yield.

Return Value select() returns the total
number of descriptors which are ready and contained in the fd_set
structures, 0 if the time limit expired, or SOCKET_ERROR if an error
occurred. If the return value is SOCKET_ERROR, WSAGetLastError()
may be used to retrieve a specific error code.

Error Codes WSANOTINITIALISED
61

A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAEINVAL The timeout value is not valid.

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall().

WSAEINPROGRESS A blocking Windows Sockets operation is
in progress.

WSAENOTSOCK One of the descriptor sets contains an
entry which is not a socket.

See Also WSAAsyncSelect(), accept(), connect(), recv(), recvfrom(),
send().

62

Description Send data on a connected socket.

#include <winsock.h>

int PASCAL FAR send (SOCKET s, const char FAR * buf, int len,
int flags);

s A descriptor identifying a connected socket.

buf A buffer containing the data to be transmitted.

len The length of the data in buf.

flags Specifies the way in which the call is made.

Remarks send() is used on connected datagram or stream sockets and is used
to write outgoing data on a socket. For datagram sockets, care must
be taken not to exceed the maximum IP packet size of the underlying
subnets, which is given by the iMaxUdpDg element in the WSAData
structure returned by WSAStartup(). If the data is too long to pass
atomically through the underlying protocol the error WSAEMSGSIZE is
returned, and no data is transmitted.

Note that the successful completion of a send() does not indicate that
the data was successfully delivered.

If no buffer space is available within the transport system to hold the
data to be transmitted, send() will block unless the socket has been
placed in a non-blocking I/O mode. On non-blocking SOCK_STREAM
sockets, the number of bytes written may be between 1 and the
requested length, depending on buffer availability on both the local
and foreign hosts. The select() call may be used to determine when it
is possible to send more data.

Flags may be used to influence the behavior of the function invocation
beyond the options specified for the associated socket. That is, the
semantics of this function are determined by the socket options and
the flags parameter. The latter is constructed by or-ing any of the
following values:

Value Meaning
MSG_DONTROUTE
Specifies that the data should not be subject to routing. A Windows

Sockets supplier may choose to ignore this flag; see also
the discussion of the SO_DONTROUTE option in section .

MSG_OOB Send out-of-band data (SOCK_STREAM only; see also
section)

Return Value If no error occurs, send()
returns the total number of characters sent. (Note that this may be
less than the number indicated by len.) Otherwise, a value of

63

SOCKET_ERROR is returned, and a specific error code may be retrieved
by calling WSAGetLastError().

Error Codes WSANOTINITIALISED

A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAEACCES The requested address is a broadcast
address, but the appropriate flag was not
set.

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall().

WSAEINPROGRESS A blocking Windows Sockets operation is
in progress.

WSAEFAULT The buf argument is not in a valid part of
the user address space.

WSAENETRESET The connection must be reset because the
Windows Sockets implementation dropped
it.

WSAENOBUFS The Windows Sockets implementation
reports a buffer deadlock.

WSAENOTCONN The socket is not connected.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is
not of type SOCK_STREAM.

WSAESHUTDOWN The socket has been shutdown; it is not
possible to send() on a socket after
shutdown() has been invoked with how
set to 1 or 2.

WSAEWOULDBLOCK The socket is marked as non-blocking and
the requested operation would block.

WSAEMSGSIZE The socket is of type SOCK_DGRAM, and
the datagram is larger than the maximum
supported by the Windows Sockets
implementation.

WSAEINVAL The socket has not been bound with
bind().

64

WSAECONNABORTED The virtual circuit was aborted due to
timeout or other failure.

WSAECONNRESET The virtual circuit was reset by the remote
side.

See Also recv(), recvfrom(), socket(), sendto(), WSAStartup().

65

Description Send data to a specific destination.

#include <winsock.h>

int PASCAL FAR sendto (SOCKET s, const char FAR * buf, int len,
int flags,
const struct sockaddr FAR * to, int tolen);

s A descriptor identifying a socket.

buf A buffer containing the data to be transmitted.

len The length of the data in buf.

flags Specifies the way in which the call is made.

to An optional pointer to the address of the target socket.

tolen The size of the address in to.

Remarks sendto() is used on datagram or stream sockets and is used to write
outgoing data on a socket. For datagram sockets, care must be taken
not to exceed the maximum IP packet size of the underlying subnets,
which is given by the iMaxUdpDg element in the WSAData structure
returned by WSAStartup(). If the data is too long to pass atomically
through the underlying protocol the error WSAEMSGSIZE is returned,
and no data is transmitted.

Note that the successful completion of a sendto() does not indicate
that the data was successfully delivered.

sendto() is normally used on a SOCK_DGRAM socket to send a
datagram to a specific peer socket identified by the to parameter. On
a SOCK_STREAM socket, the to and tolen parameters are ignored; in
this case the sendto() is equivalent to send().

To send a broadcast (on a SOCK_DGRAM only), the address in the to
parameter should be constructed using the special IP address
INADDR_BROADCAST (defined in winsock.h) together with the
intended port number. It is generally inadvisable for a broadcast
datagram to exceed the size at which fragmentation may occur, which
implies that the data portion of the datagram (excluding headers)
should not exceed 512 bytes.

If no buffer space is available within the transport system to hold the
data to be transmitted, sendto() will block unless the socket has been
placed in a non-blocking I/O mode. On non-blocking SOCK_STREAM
sockets, the number of bytes written may be between 1 and the
requested length, depending on buffer availability on both the local
and foreign hosts. The select() call may be used to determine when it
is possible to send more data.

Flags may be used to influence the behavior of the function invocation
66

beyond the options specified for the associated socket. That is, the
semantics of this function are determined by the socket options and
the flags parameter. The latter is constructed by or-ing any of the
following values:

Value Meaning
MSG_DONTROUTE
Specifies that the data should not be subject to routing. A Windows

Sockets supplier may choose to ignore this flag; see also
the discussion of the SO_DONTROUTE option in section .

MSG_OOB Send out-of-band data (SOCK_STREAM only; see also
section)

Return Value If no error occurs, sendto()
returns the total number of characters sent. (Note that this may be
less than the number indicated by len.) Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code may be retrieved
by calling WSAGetLastError().

Error Codes WSANOTINITIALISED

A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAEACCES The requested address is a broadcast
address, but the appropriate flag was not
set.

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall().

WSAEINPROGRESS A blocking Windows Sockets operation is
in progress.

WSAEFAULT The buf or to parameters are not part of
the user address space, or the to
argument is too small (less than the sizeof
a struct sockaddr).

WSAENETRESET The connection must be reset because the
Windows Sockets implementation dropped
it.

WSAENOBUFS The Windows Sockets implementation
reports a buffer deadlock.

WSAENOTCONN The socket is not connected
(SOCK_STREAM only).

67

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is
not of type SOCK_STREAM.

WSAESHUTDOWN The socket has been shutdown; it is not
possible to sendto() on a socket after
shutdown() has been invoked with how
set to 1 or 2.

WSAEWOULDBLOCK The socket is marked as non-blocking and
the requested operation would block.

WSAEMSGSIZE The socket is of type SOCK_DGRAM, and
the datagram is larger than the maximum
supported by the Windows Sockets
implementation.

WSAECONNABORTED The virtual circuit was aborted due to
timeout or other failure.

WSAECONNRESET The virtual circuit was reset by the remote
side.

WSAEADDRNOTAVAIL The specified address is not available from
the local machine.

WSAEAFNOSUPPORT Addresses in the specified family cannot
be used with this socket.

WSAEDESTADDRREQ A destination address is required.

WSAENETUNREACH The network can't be reached from this
host at this time.

See Also recv(), recvfrom(), socket(), send(), WSAStartup().

68

4.1.21 setsockopt()
Description Set a socket option.

#include <winsock.h>

int PASCAL FAR setsockopt (SOCKET s, int level, int optname,
const char FAR * optval, int optlen);

s A descriptor identifying a socket.

level The level at which the option is defined; the only
supported levels are SOL_SOCKET and IPPROTO_TCP.

optname The socket option for which the value is to be set.

optval A pointer to the buffer in which the value for the
requested option is supplied.

optlen The size of the optval buffer.

Remarks setsockopt() sets the current value for a socket option associated
with a socket of any type, in any state. Although options may exist at
multiple protocol levels, this specification only defines options that
exist at the uppermost "socket'' level. Options affect socket
operations, such as whether expedited data is received in the normal
data stream, whether broadcast messages may be sent on the socket,
etc.

There are two types of socket options: Boolean options that enable or
disable a feature or behavior, and options which require an integer
value or structure. To enable a Boolean option, optval points to a
nonzero integer. To disable the option optval points to an integer equal
to zero. optlen should be equal to sizeof(int) for Boolean options. For
other options, optval points to the an integer or structure that contains
the desired value for the option, and optlen is the length of the integer
or structure.

SO_LINGER controls the action taken when unsent data is queued on a
socket and a closesocket() is performed. See closesocket() for a
description of the way in which the SO_LINGER settings affect the
semantics of closesocket(). The application sets the desired behavior
by creating a struct linger (pointed to by the optval argument) with the
following elements:

struct linger {
int

l_onoff;
int

l_linger;
}

To enable SO_LINGER, the application should set l_onoff to a non-zero
value, set l_linger to 0 or the desired timeout (in seconds), and call

69

setsockopt(). To enable SO_DONTLINGER (i.e. disable SO_LINGER)
l_onoff should be set to zero and setsockopt() should be called.

By default, a socket may not be bound (see bind()) to a local address
which is already in use. On occasions, however, it may be desirable to
"re-use" an address in this way. Since every connection is uniquely
identified by the combination of local and remote addresses, there is
no problem with having two sockets bound to the same local address
as long as the remote addresses are different. To inform the Windows
Sockets implementation that a bind() on a socket should not be
disallowed because the desired address is already in use by another
socket, the application should set the SO_REUSEADDR socket option for
the socket before issuing the bind(). Note that the option is
interpreted only at the time of the bind(): it is therefore unnecessary
(but harmless) to set the option on a socket which is not to be bound to
an existing address, and setting or resetting the option after the bind()
has no effect on this or any other socket.

An application may request that the Windows Sockets implementation
enable the use of "keep-alive" packets on TCP connections by turning
on the SO_KEEPALIVE socket option. A Windows Sockets
implementation need not support the use of keep-alives: if it does, the
precise semantics are implementation-specific but should conform to
section 4.2.3.6 of RFC 1122: Requirements for Internet Hosts --
Communication Layers. If a connection is dropped as the result of
"keep-alives" the error code WSAENETRESET is returned to any calls in
progress on the socket, and any subsequent calls will fail with
WSAENOTCONN.

The TCP_NODELAY option disables the Nagle algorithm. The Nagle
algorithm is used to reduce the number of small packets sent by a host
by buffering unacknowledged send data until a full-size packet can be
sent. However, for some applications this algorithm can impede
performance, and TCP_NODELAY may be used to turn it off. Application
writers should not set TCP_NODELAY unless the impact of doing so is
well-understood and desired, since setting TCP_NODELAY can have a
significant negative impact of network performance. TCP_NODELAY is
the only supported socket option which uses level IPPROTO_TCP; all
other options use level SOL_SOCKET.

Windows Sockets suppliers are encouraged (but not required) to supply
output debug information if the SO_DEBUG option is set by an
application. The mechanism for generating the debug information and
the form it takes are beyond the scope of this specification.

The following options are supported for setsockopt(). The Type
identifies the type of data addressed by optval.

Value
Type
Meaning

SO_BROADCAST
BOOL
Allow transmission of broadcast messages on the socket.

70

SO_DEBUG
BOOL
Record debugging information.

SO_DONTLINGER
BOOL
Don't block close waiting for unsent data to be sent. Setting this option is equivalent
to setting SO_LINGER with l_onoff set to zero.

SO_DONTROUTE
BOOL
Don't route: send directly to interface.

SO_KEEPALIVE
BOOL
Send keepalives

SO_LINGER
struct linger FAR *
Linger on close if unsent data is present

SO_OOBINLINE
BOOL
Receive out-of-band data in the normal data stream.

SO_RCVBUF
int
Specify buffer size for receives

SO_REUSEADDR
BOOL
Allow the socket to be bound to an address which is already in use. (See bind().)

SO_SNDBUF
int
Specify buffer size for sends.

TCP_NODELAY
BOOL
Disables the Nagle algorithm for send coalescing.

BSD options not supported for setsockopt() are:

Value
Type
Meaning

SO_ACCEPTCONN
BOOL
Socket is listening

SO_ERROR
int
Get error status and clear

SO_RCVLOWAT
int
Receive low water mark

SO_RCVTIMEO
int
Receive timeout

SO_SNDLOWAT
int
Send low water mark

SO_SNDTIMEO
int

71

Send timeout
SO_TYPE

int
Type of the socket

IP_OPTIONS

Set options field in IP header.

Return Value If no error occurs,
setsockopt() returns 0. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling
WSAGetLastError().

Error Codes WSANOTINITIALISED

A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAEFAULT optval is not in a valid part of the process
address space.

WSAEINPROGRESS A blocking Windows Sockets operation is
in progress.

WSAEINVAL level is not valid, or the information in
optval is not valid.

WSAENETRESET Connection has timed out when
SO_KEEPALIVE is set.

WSAENOPROTOOPT The option is unknown or unsupported. In
particular, SO_BROADCAST is not
supported on sockets of type
SOCK_STREAM, while SO_DONTLINGER,
SO_KEEPALIVE, SO_LINGER and
SO_OOBINLINE are not supported on
sockets of type SOCK_DGRAM.

WSAENOTCONN Connection has been reset when
SO_KEEPALIVE is set.

WSAENOTSOCK The descriptor is not a socket.

See Also bind(), getsockopt(), ioctlsocket(), socket(), WSAAsyncSelect().

72

4.1.22 shutdown()
Description Disable sends and/or receives on a socket.

#include <winsock.h>

int PASCAL FAR shutdown (SOCKET s, int how);

s A descriptor identifying a socket.

how A flag that describes what types of operation will no
longer be allowed.

Remarks shutdown() is used on all types of sockets to disable reception,
transmission, or both.

If how is 0, subsequent receives on the socket will be disallowed. This
has no effect on the lower protocol layers. For TCP, the TCP window is
not changed and incoming data will be accepted (but not
acknowledged) until the window is exhausted. For UDP, incoming
datagrams are accepted and queued. In no case will an ICMP error
packet be generated.

If how is 1, subsequent sends are disallowed. For TCP sockets, a FIN
will be sent.

Setting how to 2 disables both sends and receives as described above.

Note that shutdown() does not close the socket, and resources
attached to the socket will not be freed until closesocket() is invoked.

Comments shutdown() does not block regardless of the SO_LINGER setting on
the socket.

An application should not rely on being able to re-use a socket after it
has been shut down. In particular, a Windows Sockets implementation
is not required to support the use of connect() on such a socket.

Return Value If no error occurs,
shutdown() returns 0. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling
WSAGetLastError().

Error Codes WSANOTINITIALISED

A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAEINVAL how is not valid.
73

WSAEINPROGRESS A blocking Windows Sockets operation is
in progress.

WSAENOTCONN The socket is not connected
(SOCK_STREAM only).

WSAENOTSOCK The descriptor is not a socket.

See Also connect(), socket().

74

4.1.23 socket()
Description Create a socket.

#include <winsock.h>

SOCKET PASCAL FAR socket (int af, int type, int protocol);

af An address format specification. The only format
currently supported is PF_INET, which is the ARPA
Internet address format.

type A type specification for the new socket.

protocol A particular protocol to be used with the socket, or 0 if
the caller does not wish to specify a protocol.

Remarks socket() allocates a socket descriptor of the specified address family,
data type and protocol, as well as related resources. If a protocol is not
specified (i.e. equal to 0), the default for the specified connection
mode is used.

Only a single protocol exists to support a particular socket type using a
given address format. However, the address family may be given as
AF_UNSPEC (unspecified), in which case the protocol parameter must
be specified. The protocol number to use is particular to the
"communication domain'' in which communication is to take place.

The following type specifications are supported:

Type Explanation
SOCK_STREAM Provides sequenced, reliable, two-way,

connection-based byte streams with an
out-of-band data transmission mechanism.
Uses TCP for the Internet address family.

SOCK_DGRAM Supports datagrams, which are
connectionless, unreliable buffers of a
fixed (typically small) maximum length.
Uses UDP for the Internet address family.

Sockets of type SOCK_STREAM are full-duplex byte streams. A stream
socket must be in a connected state before any data may be sent or
received on it. A connection to another socket is created with a
connect() call. Once connected, data may be transferred using
send() and recv() calls. When a session has been completed, a
closesocket() must be performed. Out-of-band data may also be
transmitted as described in send() and received as described in
recv().

The communications protocols used to implement a SOCK_STREAM
ensure that data is not lost or duplicated. If data for which the peer
protocol has buffer space cannot be successfully transmitted within a

75

reasonable length of time, the connection is considered broken and
subsequent calls will fail with the error code set to WSAETIMEDOUT.

SOCK_DGRAM sockets allow sending and receiving of datagrams to and
from arbitrary peers using sendto() and recvfrom(). If such a socket
is connect()ed to a specific peer, datagrams may be send to that peer
send() and may be received from (only) this peer using recv().

Return Value If no error occurs, socket()
returns a descriptor referencing the new socket. Otherwise, a value of
INVALID_SOCKET is returned, and a specific error code may be
retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED

A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAEAFNOSUPPORT The specified address family is not
supported.

WSAEINPROGRESS A blocking Windows Sockets operation is
in progress.

WSAEMFILE No more file descriptors are available.

WSAENOBUFS No buffer space is available. The socket
cannot be created.

WSAEPROTONOSUPPORT The specified protocol is not supported.

WSAEPROTOTYPE The specified protocol is the wrong type
for this socket.

WSAESOCKTNOSUPPORT The specified socket type is not supported
in this address family.

See Also accept(), bind(), connect(), getsockname(), getsockopt(),
setsockopt(), listen(), recv(), recvfrom(), select(), send(),
sendto(), shutdown(), ioctlsocket().

76

4.2 Database Routines
4.2.1 gethostbyaddr()
Description Get host information corresponding to an address.

#include <winsock.h>

struct hostent FAR * PASCAL FAR gethostbyaddr (const char
FAR * addr, int len, int type);

addr A pointer to an address in network byte order.

len The length of the address, which must be 4 for PF_INET
addresses.

type The type of the address, which must be PF_INET.

Remarks gethostbyaddr() returns a pointer to the following structure which
contains the name(s) and address which correspond to the given
address.

struct hostent {
char FAR *

h_name;
char FAR * FAR *

h_aliases;
short

h_addrtype;
short

h_length;
char FAR * FAR *

h_addr_list;
};

The members of this structure are:
Element Usage
h_name Official name of the host (PC).
h_aliases A NULL-terminated array of alternate names.
h_addrtype The type of address being returned; for Windows Sockets

this is always PF_INET.
h_length The length, in bytes, of each address; for PF_INET, this is

always 4.
h_addr_list A NULL-terminated list of addresses for the host.

Addresses are returned in network byte order.

The macro h_addr is defined to be h_addr_list[0] for compatibility with
older software.

The pointer which is returned points to a structure which is allocated
by the Windows Sockets implementation. The application must never
attempt to modify this structure or to free any of its components.
Furthermore, only one copy of this structure is allocated per thread,
and so the application should copy any information which it needs
before issuing any other Windows Sockets API calls.

77

Return Value If no error occurs,
gethostbyaddr() returns a pointer to the hostent structure described
above. Otherwise it returns a NULL pointer and a specific error number
may be retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED

A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or
SERVERFAIL.

WSANO_RECOVERY Non recoverable errors, FORMERR,
REFUSED, NOTIMP.

WSANO_DATA Valid name, no data record of requested
type.

WSAEINPROGRESS A blocking Windows Sockets operation is
in progress.

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall().

See Also WSAAsyncGetHostByAddr(), gethostbyname(),

78

4.2.2 gethostbyname()
Description Get host information corresponding to a hostname.

#include <winsock.h>

struct hostent FAR * PASCAL FAR gethostbyname (const char
FAR * name);

name A pointer to the name of the host.

Remarks gethostbyname() returns a pointer to a hostent structure as
described under gethostbyaddr(). The contents of this structure
correspond to the hostname name.

The pointer which is returned points to a structure which is allocated
by the Windows Sockets implementation. The application must never
attempt to modify this structure or to free any of its components.
Furthermore, only one copy of this structure is allocated per thread,
and so the application should copy any information which it needs
before issuing any other Windows Sockets API calls.

A gethostbyname() implementation must not resolve IP address
strings passed to it. Such a request should be treated exactly as if an
unknown host name were passed. An application with an IP address
string to resolve should use inet_addr() to convert the string to an IP
address, then gethostbyaddr() to obtain the hostent structure.

Return Value If no error occurs,
gethostbyname() returns a pointer to the hostent structure described
above. Otherwise it returns a NULL pointer and a specific error number
may be retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED

A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or
SERVERFAIL.

WSANO_RECOVERY Non recoverable errors, FORMERR,
REFUSED, NOTIMP.

WSANO_DATA Valid name, no data record of requested
type.

79

WSAEINPROGRESS A blocking Windows Sockets operation is
in progress.

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall().

See Also WSAAsyncGetHostByName(), gethostbyaddr()

80

4.2.3 gethostname()
Description Return the standard host name for the local machine.

#include <winsock.h>

int PASCAL FAR gethostname (char FAR * name, int namelen);

name A pointer to a buffer that will receive the host name.

namelen The length of the buffer.

Remarks This routine returns the name of the local host into the buffer specified
by the name parameter. The host name is returned as a null-
terminated string. The form of the host name is dependent on the
Windows Sockets implementation--it may be a simple host name, or it
may be a fully qualified domain name. However, it is guaranteed that
the name returned will be successfully parsed by gethostbyname()
and WSAAsyncGetHostByName().

Return Value If no error occurs,
gethostname() returns 0, otherwise it returns SOCKET_ERROR and a
specific error code may be retrieved by calling WSAGetLastError().

Error Codes WSAEFAULT

The namelen parameter is too small

WSANOTINITIALISED

A successful WSAStartup() must occur
before using this API.

WSAENETDOWN

The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAEINPROGRESS

A blocking Windows Sockets operation is
in progress.

See Also gethostbyname(), WSAAsyncGetHostByName().

81

4.2.4 getprotobyname()
Description Get protocol information corresponding to a protocol name.

#include <winsock.h>

struct protoent FAR * PASCAL FAR getprotobyname (const char
FAR * name);

name A pointer to a protocol name.

Remarks getprotobyname() returns a pointer to the following structure which
contains the name(s) and protocol number which correspond to the
given protocol name.

struct protoent {
char FAR *

p_name;
char FAR * FAR *

p_aliases;
short

p_proto;
};

The members of this structure are:
Element Usage
p_name Official name of the protocol.
p_aliases A NULL-terminated array of alternate names.
p_proto The protocol number, in host byte order.

The pointer which is returned points to a structure which is allocated
by the Windows Sockets library. The application must never attempt to
modify this structure or to free any of its components. Furthermore
only one copy of this structure is allocated per thread, and so the
application should copy any information which it needs before issuing
any other Windows Sockets API calls.

Return Value If no error occurs,
getprotobyname() returns a pointer to the protoent structure
described above. Otherwise it returns a NULL pointer and a specific
error number may be retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED

A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSANO_RECOVERY Non recoverable errors, FORMERR,
REFUSED, NOTIMP.

82

WSANO_DATA Valid name, no data record of requested
type.

WSAEINPROGRESS A blocking Windows Sockets operation is
in progress.

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall().

See Also WSAAsyncGetProtoByName(),
getprotobynumber()

83

4.2.5 getprotobynumber()
Description Get protocol information corresponding to a protocol number.

#include <winsock.h>

struct protoent FAR * PASCAL FAR getprotobynumber (int
number);

number A protocol number, in host byte order.

Remarks This function returns a pointer to a protoent structure as described
above in getprotobyname(). The contents of the structure
correspond to the given protocol number.

The pointer which is returned points to a structure which is allocated
by the Windows Sockets implementation. The application must never
attempt to modify this structure or to free any of its components.
Furthermore, only one copy of this structure is allocated per thread,
and so the application should copy any information which it needs
before issuing any other Windows Sockets API calls.

Return Value If no error occurs,
getprotobynumber() returns a pointer to the protoent structure
described above. Otherwise it returns a NULL pointer and a specific
error number may be retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED

A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSANO_RECOVERY Non recoverable errors, FORMERR,
REFUSED, NOTIMP.

WSANO_DATA Valid name, no data record of requested
type.

WSAEINPROGRESS A blocking Windows Sockets operation is
in progress.

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall().

See Also WSAAsyncGetProtoByNumber(), getprotobyname()

84

4.2.6 getservbyname()
Description Get service information corresponding to a service name and protocol.

#include <winsock.h>

struct servent FAR * PASCAL FAR getservbyname (const char
FAR * name,
const char FAR * proto);

name A pointer to a service name.

proto An optional pointer to a protocol name. If this is NULL,
getservbyname() returns the first service entry for
which the name matches the s_name or one of the
s_aliases. Otherwise getservbyname() matches both
the name and the proto.

Remarks getservbyname() returns a pointer to the following structure which
contains the name(s) and service number which correspond to the
given service name.

struct servent {
char FAR *

s_name;
char FAR * FAR *

s_aliases;
short

s_port;
char FAR *

s_proto;
};

The members of this structure are:
Element Usage
s_name Official name of the service.
s_aliases A NULL-terminated array of alternate names.
s_port The port number at which the service may be contacted.

Port numbers are returned in network byte order.
s_proto The name of the protocol to use when contacting the

service.

The pointer which is returned points to a structure which is allocated
by the Windows Sockets library. The application must never attempt to
modify this structure or to free any of its components. Furthermore
only one copy of this structure is allocated per thread, and so the
application should copy any information which it needs before issuing
any other Windows Sockets API calls.

Return Value If no error occurs,
getservbyname() returns a pointer to the servent structure described
above. Otherwise it returns a NULL pointer and a specific error number
may be retrieved by calling WSAGetLastError().

85

Error Codes WSANOTINITIALISED

A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSANO_RECOVERY Non recoverable errors, FORMERR,
REFUSED, NOTIMP.

WSANO_DATA Valid name, no data record of requested
type.

WSAEINPROGRESS A blocking Windows Sockets operation is
in progress.

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall().

See Also WSAAsyncGetServByName(),
getservbyport()

86

4.2.7 getservbyport()
Description Get service information corresponding to a port and protocol.

#include <winsock.h>

struct servent FAR * PASCAL FAR getservbyport (int port, const
char FAR * proto);

port The port for a service, in network byte order.

proto An optional pointer to a protocol name. If this is NULL,
getservbyport() returns the first service entry for
which the port matches the s_port. Otherwise
getservbyport() matches both the port and the proto.

Remarks getservbyport() returns a pointer a servent structure as described
above for getservbyname().

The pointer which is returned points to a structure which is allocated
by the Windows Sockets implementation. The application must never
attempt to modify this structure or to free any of its components.
Furthermore, only one copy of this structure is allocated per thread,
and so the application should copy any information which it needs
before issuing any other Windows Sockets API calls.

Return Value If no error occurs,
getservbyport() returns a pointer to the servent structure described
above. Otherwise it returns a NULL pointer and a specific error number
may be retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED

A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSANO_RECOVERY Non recoverable errors, FORMERR,
REFUSED, NOTIMP.

WSANO_DATA Valid name, no data record of requested
type.

WSAEINPROGRESS A blocking Windows Sockets operation is
in progress.

WSAEINTR The (blocking) call was canceled via
WSACancelBlockingCall().

87

See Also WSAAsyncGetServByPort(), getservbyname()

88

4.3 Microsoft Windows-specific Extensions
4.3.1 WSAAsyncGetHostByAddr()
Description Get host information corresponding to an address - asynchronous

version.

#include <winsock.h>

HANDLE PASCAL FAR WSAAsyncGetHostByAddr (HWND hWnd,
unsigned int wMsg, const char FAR * addr, int len, int type, char
FAR * buf, int buflen);

hWnd The handle of the window which should receive a
message when the asynchronous request completes.

wMsg The message to be received when the asynchronous
request completes.

addr A pointer to the network address for the host. Host
addresses are stored in network byte order.

len The length of the address, which must be 4 for PF_INET.

type The type of the address, which must be PF_INET.

buf A pointer to the data area to receive the hostent data.
Note that this must be larger than the size of a hostent
structure. This is because the data area supplied is used
by the Windows Sockets implementation to contain not
only a hostent structure but any and all of the data
which is referenced by members of the hostent
structure. It is recommended that you supply a buffer of
MAXGETHOSTSTRUCT bytes.

buflen The size of data area buf above.

Remarks This function is an asynchronous version of gethostbyaddr(), and is
used to retrieve host name and address information corresponding to a
network address. The Windows Sockets implementation initiates the
operation and returns to the caller immediately, passing back an
asynchronous task handle which the application may use to identify
the operation. When the operation is completed, the results (if any)
are copied into the buffer provided by the caller and a message is sent
to the application's window.

When the asynchronous operation is complete the application's
window hWnd receives message wMsg. The wParam argument
contains the asynchronous task handle as returned by the original
function call. The high 16 bits of lParam contain any error code. The
error code may be any error as defined in winsock.h. An error code of
zero indicates successful completion of the asynchronous operation.
On successful completion, the buffer supplied to the original function
call contains a hostent structure. To access the elements of this
structure, the original buffer address should be cast to a hostent

89

structure pointer and accessed as appropriate.

Note that if the error code is WSAENOBUFS, it indicates that the size of
the buffer specified by buflen in the original call was too small to
contain all the resultant information. In this case, the low 16 bits of
lParam contain the size of buffer required to supply ALL the requisite
information. If the application decides that the partial data is
inadequate, it may reissue the WSAAsyncGetHostByAddr() function
call with a buffer large enough to receive all the desired information
(i.e. no smaller than the low 16 bits of lParam).

The error code and buffer length should be extracted from the lParam
using the macros WSAGETASYNCERROR and WSAGETASYNCBUFLEN,
defined in winsock.h as:

#define WSAGETASYNCERROR(lParam) HIWORD(lParam)
#define WSAGETASYNCBUFLEN(lParam) LOWORD(lParam)

The use of these macros will maximize the portability of the source
code for the application.

Return Value The return value specifies
whether or not the asynchronous operation was successfully initiated.
Note that it does not imply success or failure of the operation itself.

If the operation was successfully initiated,
WSAAsyncGetHostByAddr() returns a nonzero value of type
HANDLE which is the asynchronous task handle for the request. This
value can be used in two ways. It can be used to cancel the operation
using WSACancelAsyncRequest(). It can also be used to match up
asynchronous operations and completion messages, by examining the
wParam message argument.

If the asynchronous operation could not be initiated,
WSAAsyncGetHostByAddr() returns a zero value, and a specific
error number may be retrieved by calling WSAGetLastError().

Comments The buffer supplied to this function is used by the Windows Sockets
implementation to construct a hostent structure together with the
contents of data areas referenced by members of the same hostent
structure. To avoid the WSAENOBUFS error noted above, the
application should provide a buffer of at least MAXGETHOSTSTRUCT
bytes (as defined in winsock.h).

Notes For
Windows Sockets
Suppliers It is the responsibility of the Windows Sockets implementation to

ensure that messages are successfully posted to the application. If a
PostMessage() operation fails, the Windows Sockets implementation
must re-post that message as long as the window exists.

Windows Sockets suppliers should use the WSAMAKEASYNCREPLY
macro when constructing the lParam in the message.

90

Error Codes The following error codes may be set when an application window
receives a message. As described above, they may be extracted from
the lParam in the reply message using the WSAGETASYNCERROR
macro.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAENOBUFS No/insufficient buffer space is available

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or
SERVERFAIL.

WSANO_RECOVERY Non recoverable errors, FORMERR,
REFUSED, NOTIMP.

WSANO_DATA Valid name, no data record of requested
type.

The following errors may occur at the time of the function call, and
indicate that the asynchronous operation could not be initiated.

WSANOTINITIALISED A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAEINPROGRESS A blocking Windows Sockets operation is
in progress.

WSAEWOULDBLOCK The asynchronous operation cannot be
scheduled at this time due to resource or
other constraints within the Windows
Sockets implementation.

See Also gethostbyaddr(), WSACancelAsyncRequest()

91

4.3.2 WSAAsyncGetHostByName()
Description Get host information corresponding to a hostname - asynchronous

version.

#include <winsock.h>

HANDLE PASCAL FAR WSAAsyncGetHostByName (HWND hWnd,
unsigned int wMsg, const char FAR * name, char FAR * buf, int
buflen);

hWnd The handle of the window which should receive a
message when the asynchronous request completes.

wMsg The message to be received when the asynchronous
request completes.

name A pointer to the name of the host.

buf A pointer to the data area to receive the hostent data.
Note that this must be larger than the size of a hostent
structure. This is because the data area supplied is used
by the Windows Sockets implementation to contain not
only a hostent structure but any and all of the data
which is referenced by members of the hostent
structure. It is recommended that you supply a buffer of
MAXGETHOSTSTRUCT bytes.

buflen The size of data area buf above.

Remarks This function is an asynchronous version of gethostbyname(), and is
used to retrieve host name and address information corresponding to a
hostname. The Windows Sockets implementation initiates the
operation and returns to the caller immediately, passing back an
asynchronous task handle which the application may use to identify
the operation. When the operation is completed, the results (if any)
are copied into the buffer provided by the caller and a message is sent
to the application's window.

When the asynchronous operation is complete the application's
window hWnd receives message wMsg. The wParam argument
contains the asynchronous task handle as returned by the original
function call. The high 16 bits of lParam contain any error code. The
error code may be any error as defined in winsock.h. An error code of
zero indicates successful completion of the asynchronous operation.
On successful completion, the buffer supplied to the original function
call contains a hostent structure. To access the elements of this
structure, the original buffer address should be cast to a hostent
structure pointer and accessed as appropriate.

Note that if the error code is WSAENOBUFS, it indicates that the size of
the buffer specified by buflen in the original call was too small to
contain all the resultant information. In this case, the low 16 bits of
lParam contain the size of buffer required to supply ALL the requisite

92

information. If the application decides that the partial data is
inadequate, it may reissue the WSAAsyncGetHostByName()
function call with a buffer large enough to receive all the desired
information (i.e. no smaller than the low 16 bits of lParam).

The error code and buffer length should be extracted from the lParam
using the macros WSAGETASYNCERROR and WSAGETASYNCBUFLEN,
defined in winsock.h as:

#define WSAGETASYNCERROR(lParam) HIWORD(lParam)
#define WSAGETASYNCBUFLEN(lParam) LOWORD(lParam)

The use of these macros will maximize the portability of the source
code for the application.

Return Value The return value specifies
whether or not the asynchronous operation was successfully initiated.
Note that it does not imply success or failure of the operation itself.

If the operation was successfully initiated,
WSAAsyncGetHostByName() returns a nonzero value of type
HANDLE which is the asynchronous task handle for the request. This
value can be used in two ways. It can be used to cancel the operation
using WSACancelAsyncRequest(). It can also be used to match up
asynchronous operations and completion messages, by examining the
wParam message argument.

If the asynchronous operation could not be initiated,
WSAAsyncGetHostByName() returns a zero value, and a specific
error number may be retrieved by calling WSAGetLastError().

Comments The buffer supplied to this function is used by the Windows Sockets
implementation to construct a hostent structure together with the
contents of data areas referenced by members of the same hostent
structure. To avoid the WSAENOBUFS error noted above, the
application should provide a buffer of at least MAXGETHOSTSTRUCT
bytes (as defined in winsock.h).

Notes For
Windows Sockets
Suppliers It is the responsibility of the Windows Sockets implementation to

ensure that messages are successfully posted to the application. If a
PostMessage() operation fails, the Windows Sockets implementation
must re-post that message as long as the window exists.

Windows Sockets suppliers should use the WSAMAKEASYNCREPLY
macro when constructing the lParam in the message.

Error Codes The following error codes may be set when an application window
receives a message. As described above, they may be extracted from
the lParam in the reply message using the WSAGETASYNCERROR
macro.

93

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAENOBUFS No/insufficient buffer space is available

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or
SERVERFAIL.

WSANO_RECOVERY Non recoverable errors, FORMERR,
REFUSED, NOTIMP.

WSANO_DATA Valid name, no data record of requested
type.

The following errors may occur at the time of the function call, and
indicate that the asynchronous operation could not be initiated.

WSANOTINITIALISED A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAEINPROGRESS A blocking Windows Sockets operation is
in progress.

WSAEWOULDBLOCK The asynchronous operation cannot be
scheduled at this time due to resource or
other constraints within the Windows
Sockets implementation.

See Also gethostbyname(), WSACancelAsyncRequest()

94

4.3.3 WSAAsyncGetProtoByName()
Description Get protocol information corresponding to a protocol name -

asynchronous version.

#include <winsock.h>

HANDLE PASCAL FAR WSAAsyncGetProtoByName (HWND
hWnd,
unsigned int wMsg, const char FAR * name, char FAR * buf, int
buflen);

hWnd The handle of the window which should receive a
message when the asynchronous request completes.

wMsg The message to be received when the asynchronous
request completes.

name A pointer to the protocol name to be resolved.

buf A pointer to the data area to receive the protoent data.
Note that this must be larger than the size of a protoent
structure. This is because the data area supplied is used
by the Windows Sockets implementation to contain not
only a protoent structure but any and all of the data
which is referenced by members of the protoent
structure. It is recommended that you supply a buffer of
MAXGETHOSTSTRUCT bytes.

buflen The size of data area buf above.

Remarks This function is an asynchronous version of getprotobyname(), and is
used to retrieve the protocol name and number corresponding to a
protocol name. The Windows Sockets implementation initiates the
operation and returns to the caller immediately, passing back an
asynchronous task handle which the application may use to identify
the operation. When the operation is completed, the results (if any)
are copied into the buffer provided by the caller and a message is sent
to the application's window.

When the asynchronous operation is complete the application's
window hWnd receives message wMsg. The wParam argument
contains the asynchronous task handle as returned by the original
function call. The high 16 bits of lParam contain any error code. The
error code may be any error as defined in winsock.h. An error code of
zero indicates successful completion of the asynchronous operation.
On successful completion, the buffer supplied to the original function
call contains a protoent structure. To access the elements of this
structure, the original buffer address should be cast to a protoent
structure pointer and accessed as appropriate.

Note that if the error code is WSAENOBUFS, it indicates that the size of
the buffer specified by buflen in the original call was too small to
contain all the resultant information. In this case, the low 16 bits of

95

lParam contain the size of buffer required to supply ALL the requisite
information. If the application decides that the partial data is
inadequate, it may reissue the WSAAsyncGetProtoByName()
function call with a buffer large enough to receive all the desired
information (i.e. no smaller than the low 16 bits of lParam).

The error code and buffer length should be extracted from the lParam
using the macros WSAGETASYNCERROR and WSAGETASYNCBUFLEN,
defined in winsock.h as:

#define WSAGETASYNCERROR(lParam) HIWORD(lParam)
#define WSAGETASYNCBUFLEN(lParam) LOWORD(lParam)

The use of these macros will maximize the portability of the source
code for the application.

Return Value The return value specifies
whether or not the asynchronous operation was successfully initiated.
Note that it does not imply success or failure of the operation itself.

If the operation was successfully initiated,
WSAAsyncGetProtoByName() returns a nonzero value of type
HANDLE which is the asynchronous task handle for the request. This
value can be used in two ways. It can be used to cancel the operation
using WSACancelAsyncRequest(). It can also be used to match up
asynchronous operations and completion messages, by examining the
wParam message argument.

If the asynchronous operation could not be initiated,
WSAAsyncGetProtoByName() returns a zero value, and a specific
error number may be retrieved by calling WSAGetLastError().

Comments The buffer supplied to this function is used by the Windows Sockets
implementation to construct a protoent structure together with the
contents of data areas referenced by members of the same protoent
structure. To avoid the WSAENOBUFS error noted above, the
application should provide a buffer of at least MAXGETHOSTSTRUCT
bytes (as defined in winsock.h).

Notes For
Windows Sockets
Suppliers It is the responsibility of the Windows Sockets implementation to

ensure that messages are successfully posted to the application. If a
PostMessage() operation fails, the Windows Sockets implementation
must re-post that message as long as the window exists.

Windows Sockets suppliers should use the WSAMAKEASYNCREPLY
macro when constructing the lParam in the message.

Error Codes The following error codes may be set when an application window
receives a message. As described above, they may be extracted from
the lParam in the reply message using the WSAGETASYNCERROR
macro.

96

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAENOBUFS No/insufficient buffer space is available

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or
SERVERFAIL.

WSANO_RECOVERY Non recoverable errors, FORMERR,
REFUSED, NOTIMP.

WSANO_DATA Valid name, no data record of requested
type.

The following errors may occur at the time of the function call, and
indicate that the asynchronous operation could not be initiated.

WSANOTINITIALISED A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAEINPROGRESS A blocking Windows Sockets operation is
in progress.

WSAEWOULDBLOCK The asynchronous operation cannot be
scheduled at this time due to resource or
other constraints within the Windows
Sockets implementation.

See Also getprotobyname(), WSACancelAsyncRequest()

97

4.3.4 WSAAsyncGetProtoByNumber()
Description Get protocol information corresponding to a protocol number -

asynchronous version.

#include <winsock.h>

HANDLE PASCAL FAR WSAAsyncGetProtoByNumber (HWND
hWnd,
unsigned int wMsg, int number, char FAR * buf, int buflen);

hWnd The handle of the window which should receive a
message when the asynchronous request completes.

wMsg The message to be received when the asynchronous
request completes.

number The protocol number to be resolved, in host byte order.

buf A pointer to the data area to receive the protoent data.
Note that this must be larger than the size of a protoent
structure. This is because the data area supplied is used
by the Windows Sockets implementation to contain not
only a protoent structure but any and all of the data
which is referenced by members of the protoent
structure. It is recommended that you supply a buffer of
MAXGETHOSTSTRUCT bytes.

buflen The size of data area buf above.

Remarks This function is an asynchronous version of getprotobynumber(),
and is used to retrieve the protocol name and number corresponding to
a protocol number. The Windows Sockets implementation initiates the
operation and returns to the caller immediately, passing back an
asynchronous task handle which the application may use to identify
the operation. When the operation is completed, the results (if any)
are copied into the buffer provided by the caller and a message is sent
to the application's window.

When the asynchronous operation is complete the application's
window hWnd receives message wMsg. The wParam argument
contains the asynchronous task handle as returned by the original
function call. The high 16 bits of lParam contain any error code. The
error code may be any error as defined in winsock.h. An error code of
zero indicates successful completion of the asynchronous operation.
On successful completion, the buffer supplied to the original function
call contains a protoent structure. To access the elements of this
structure, the original buffer address should be cast to a protoent
structure pointer and accessed as appropriate.

Note that if the error code is WSAENOBUFS, it indicates that the size of
the buffer specified by buflen in the original call was too small to
contain all the resultant information. In this case, the low 16 bits of
lParam contain the size of buffer required to supply ALL the requisite

98

information. If the application decides that the partial data is
inadequate, it may reissue the WSAAsyncGetProtoByNumber()
function call with a buffer large enough to receive all the desired
information (i.e. no smaller than the low 16 bits of lParam).

The error code and buffer length should be extracted from the lParam
using the macros WSAGETASYNCERROR and WSAGETASYNCBUFLEN,
defined in winsock.h as:

#define WSAGETASYNCERROR(lParam) HIWORD(lParam)
#define WSAGETASYNCBUFLEN(lParam) LOWORD(lParam)

The use of these macros will maximize the portability of the source
code for the application.

Return Value The return value specifies
whether or not the asynchronous operation was successfully initiated.
Note that it does not imply success or failure of the operation itself.

If the operation was successfully initiated,
WSAAsyncGetProtoByNumber() returns a nonzero value of type
HANDLE which is the asynchronous task handle for the request. This
value can be used in two ways. It can be used to cancel the operation
using WSACancelAsyncRequest(). It can also be used to match up
asynchronous operations and completion messages, by examining the
wParam message argument.

If the asynchronous operation could not be initiated,
WSAAsyncGetProtoByNumber() returns a zero value, and a specific
error number may be retrieved by calling WSAGetLastError().

Comments The buffer supplied to this function is used by the Windows Sockets
implementation to construct a protoent structure together with the
contents of data areas referenced by members of the same protoent
structure. To avoid the WSAENOBUFS error noted above, the
application should provide a buffer of at least MAXGETHOSTSTRUCT
bytes (as defined in winsock.h).

Notes For
Windows Sockets
Suppliers It is the responsibility of the Windows Sockets implementation to

ensure that messages are successfully posted to the application. If a
PostMessage() operation fails, the Windows Sockets implementation
must re-post that message as long as the window exists.

Windows Sockets suppliers should use the WSAMAKEASYNCREPLY
macro when constructing the lParam in the message.

Error Codes The following error codes may be set when an application window
receives a message. As described above, they may be extracted from
the lParam in the reply message using the WSAGETASYNCERROR
macro.

99

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAENOBUFS No/insufficient buffer space is available

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or
SERVERFAIL.

WSANO_RECOVERY Non recoverable errors, FORMERR,
REFUSED, NOTIMP.

WSANO_DATA Valid name, no data record of requested
type.

The following errors may occur at the time of the function call, and
indicate that the asynchronous operation could not be initiated.

WSANOTINITIALISED A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAEINPROGRESS A blocking Windows Sockets operation is
in progress.

WSAEWOULDBLOCK The asynchronous operation cannot be
scheduled at this time due to resource or
other constraints within the Windows
Sockets implementation.

See Also getprotobynumber(), WSACancelAsyncRequest()

100

4.3.5 WSAAsyncGetServByName()
Description Get service information corresponding to a service name and port -

asynchronous version.

#include <winsock.h>

HANDLE PASCAL FAR WSAAsyncGetServByName (HWND hWnd,
unsigned int wMsg, const char FAR * name, const char FAR *
proto, char FAR * buf, int buflen);

hWnd The handle of the window which should receive a
message when the asynchronous request completes.

wMsg The message to be received when the asynchronous
request completes.

name A pointer to a service name.

proto A pointer to a protocol name. This may be NULL, in
which case WSAAsyncGetServByName() will search
for the first service entry for which s_name or one of the
s_aliases matches the given name. Otherwise
WSAAsyncGetServByName() matches both name and
proto.

buf A pointer to the data area to receive the servent data.
Note that this must be larger than the size of a servent
structure. This is because the data area supplied is used
by the Windows Sockets implementation to contain not
only a servent structure but any and all of the data
which is referenced by members of the servent
structure. It is recommended that you supply a buffer of
MAXGETHOSTSTRUCT bytes.

buflen The size of data area buf above.

Remarks This function is an asynchronous version of getservbyname(), and is
used to retrieve service information corresponding to a service name.
The Windows Sockets implementation initiates the operation and
returns to the caller immediately, passing back an asynchronous task
handle which the application may use to identify the operation. When
the operation is completed, the results (if any) are copied into the
buffer provided by the caller and a message is sent to the application's
window.

When the asynchronous operation is complete the application's
window hWnd receives message wMsg. The wParam argument
contains the asynchronous task handle as returned by the original
function call. The high 16 bits of lParam contain any error code. The
error code may be any error as defined in winsock.h. An error code of
zero indicates successful completion of the asynchronous operation.
On successful completion, the buffer supplied to the original function
call contains a hostent structure. To access the elements of this

101

structure, the original buffer address should be cast to a hostent
structure pointer and accessed as appropriate.

Note that if the error code is WSAENOBUFS, it indicates that the size of
the buffer specified by buflen in the original call was too small to
contain all the resultant information. In this case, the low 16 bits of
lParam contain the size of buffer required to supply ALL the requisite
information. If the application decides that the partial data is
inadequate, it may reissue the WSAAsyncGetServByName()
function call with a buffer large enough to receive all the desired
information (i.e. no smaller than the low 16 bits of lParam).

The error code and buffer length should be extracted fromthe lParam
using the macros WSAGETASYNCERROR and WSAGETASYNCBUFLEN,
defined in winsock.h as:

#define WSAGETASYNCERROR(lParam) HIWORD(lParam)
#define WSAGETASYNCBUFLEN(lParam) LOWORD(lParam)

The use of these macros will maximize the portability of the source
code for the application.

Return Value The return value specifies
whether or not the asynchronous operation was successfully initiated.
Note that it does not imply success or failure of the operation itself.

If the operation was successfully initiated,
WSAAsyncGetServByName() returns a nonzero value of type
HANDLE which is the asynchronous task handle for the request. This
value can be used in two ways. It can be used to cancel the operation
using WSACancelAsyncRequest(). It can also be used to match up
asynchronous operations and completion messages, by examining the
wParam message argument.

If the asynchronous operation could not be initiated,
WSAAsyncServByName() returns a zero value, and a specific error
number may be retrieved by calling WSAGetLastError().

Comments The buffer supplied to this function is used by the Windows Sockets
implementation to construct a hostent structure together with the
contents of data areas referenced by members of the same hostent
structure. To avoid the WSAENOBUFS error noted above, the
application should provide a buffer of at least MAXGETHOSTSTRUCT
bytes (as defined in winsock.h).

Notes For
Windows Sockets
Suppliers It is the responsibility of the Windows Sockets implementation to

ensure that messages are successfully posted to the application. If a
PostMessage() operation fails, the Windows Sockets implementation
must re-post that message as long as the window exists.

Windows Sockets suppliers should use the WSAMAKEASYNCREPLY
102

macro when constructing the lParam in the message.

Error Codes The following error codes may be set when an application window
receives a message. As described above, they may be extracted from
the lParam in the reply message using the WSAGETASYNCERROR
macro.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAENOBUFS No/insufficient buffer space is available

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or
SERVERFAIL.

WSANO_RECOVERY Non recoverable errors, FORMERR,
REFUSED, NOTIMP.

WSANO_DATA Valid name, no data record of requested
type.

The following errors may occur at the time of the function call, and
indicate that the asynchronous operation could not be initiated.

WSANOTINITIALISED A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAEINPROGRESS A blocking Windows Sockets operation is
in progress.

WSAEWOULDBLOCK The asynchronous operation cannot be
scheduled at this time due to resource or
other constraints within the Windows
Sockets implementation.

See Also getservbyname(), WSACancelAsyncRequest()

103

4.3.6 WSAAsyncGetServByPort()
Description Get service information corresponding to a port and protocol -

asynchronous version.

#include <winsock.h>

HANDLE PASCAL FAR WSAAsyncGetServByPort (HWND hWnd,
unsigned int wMsg, int port, const char FAR * proto, char FAR *
buf, int buflen);

hWnd The handle of the window which should receive a
message when the asynchronous request completes.

wMsg The message to be received when the asynchronous
request completes.

port The port for the service, in network byte order.

proto A pointer to a protocol name. This may be NULL, in
which case WSAAsyncGetServByPort() will search for
the first service entry for which s_port match the given
port. Otherwise WSAAsyncGetServByPort() matches
both port and proto.

buf A pointer to the data area to receive the servent data.
Note that this must be larger than the size of a servent
structure. This is because the data area supplied is used
by the Windows Sockets implementation to contain not
only a servent structure but any and all of the data
which is referenced by members of the servent
structure. It is recommended that you supply a buffer of
MAXGETHOSTSTRUCT bytes.

buflen The size of data area buf above.

Remarks This function is an asynchronous version of getservbyport(), and is
used to retrieve service information corresponding to a port number.
The Windows Sockets implementation initiates the operation and
returns to the caller immediately, passing back an asynchronous task
handle which the application may use to identify the operation. When
the operation is completed, the results (if any) are copied into the
buffer provided by the caller and a message is sent to the application's
window.

When the asynchronous operation is complete the application's
window hWnd receives message wMsg. The wParam argument
contains the asynchronous task handle as returned by the original
function call. The high 16 bits of lParam contain any error code. The
error code may be any error as defined in winsock.h. An error code of
zero indicates successful completion of the asynchronous operation.
On successful completion, the buffer supplied to the original function
call contains a servent structure. To access the elements of this
structure, the original buffer address should be cast to a servent

104

structure pointer and accessed as appropriate.

Note that if the error code is WSAENOBUFS, it indicates that the size of
the buffer specified by buflen in the original call was too small to
contain all the resultant information. In this case, the low 16 bits of
lParam contain the size of buffer required to supply ALL the requisite
information. If the application decides that the partial data is
inadequate, it may reissue the WSAAsyncGetServByPort() function
call with a buffer large enough to receive all the desired information
(i.e. no smaller than the low 16 bits of lParam).

The error code and buffer length should be extracted from the lParam
using the macros WSAGETASYNCERROR and WSAGETASYNCBUFLEN,
defined in winsock.h as:

#define WSAGETASYNCERROR(lParam) HIWORD(lParam)
#define WSAGETASYNCBUFLEN(lParam) LOWORD(lParam)

The use of these macros will maximize the portability of the source
code for the application.

Return Value The return value specifies
whether or not the asynchronous operation was successfully initiated.
Note that it does not imply success or failure of the operation itself.

If the operation was successfully initiated,
WSAAsyncGetServByPort() returns a nonzero value of type HANDLE
which is the asynchronous task handle for the request. This value can
be used in two ways. It can be used to cancel the operation using
WSACancelAsyncRequest(). It can also be used to match up
asynchronous operations and completion messages, by examining the
wParam message argument.

If the asynchronous operation could not be initiated,
WSAAsyncGetServByPort() returns a zero value, and a specific error
number may be retrieved by calling WSAGetLastError().

Comments The buffer supplied to this function is used by the Windows Sockets
implementation to construct a servent structure together with the
contents of data areas referenced by members of the same servent
structure. To avoid the WSAENOBUFS error noted above, the
application should provide a buffer of at least MAXGETHOSTSTRUCT
bytes (as defined in winsock.h).

Notes For
Windows Sockets
Suppliers It is the responsibility of the Windows Sockets implementation to

ensure that messages are successfully posted to the application. If a
PostMessage() operation fails, the Windows Sockets implementation
must re-post that message as long as the window exists.

Windows Sockets suppliers should use the WSAMAKEASYNCREPLY
macro when constructing the lParam in the message.

105

Error Codes The following error codes may be set when an application window
receives a message. As described above, they may be extracted from
the lParam in the reply message using the WSAGETASYNCERROR
macro.

WSAENETDOWN The Windows Sockets implementationhas
detected that the network subsystem has
failed.

WSAENOBUFS No/insufficient buffer space is available

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or
SERVERFAIL.

WSANO_RECOVERY Non recoverable errors, FORMERR,
REFUSED, NOTIMP.

WSANO_DATA Valid name, no data record of requested
type.

The following errors may occur at the time of the function call, and
indicate that the asynchronous operation could not be initiated.

WSANOTINITIALISED A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAEINPROGRESS A blocking Windows Sockets operation is
in progress.

WSAEWOULDBLOCK The asynchronous operation cannot be
scheduled at this time due to resource or
other constraints within the Windows
Sockets implementation.

See Also getservbyport(), WSACancelAsyncRequest()

106

4.3.7 WSAAsyncSelect()
Description Request event notification for a socket.

#include <winsock.h>

int PASCAL FAR WSAAsyncSelect (SOCKET s, HWND hWnd,
unsigned int wMsg, long lEvent);

s A descriptor identifying the socket for which event
notification is required.

hWnd A handle identifying the window which should receive a
message when a network event occurs.

wMsg The message to be received when a network event
occurs.

lEvent A bitmask which specifies a combination of network
events in which the application is interested.

Remarks This function is used to request that the Windows Sockets DLL should
send a message to the window hWnd whenever it detects any of the
network events specified by the lEvent parameter. The message which
should be sent is specified by the wMsg parameter. The socket for
which notification is required is identified by s.

This function automatically sets socket s to non-blocking mode.

The lEvent parameter is constructed by or'ing any of the values
specified in the following list.

Value Meaning
FD_READ Want to receive notification of readiness for

reading
FD_WRITE Want to receive notification of readiness for

writing
FD_OOB Want to receive notification of the arrival of out-

of-band data
FD_ACCEPT Want to receive notification of incoming

connections
FD_CONNECT Want to receive notification of completed

connection
FD_CLOSE Want to receive notification of socket closure

Issuing a WSAAsyncSelect() for a socket cancels any previous
WSAAsyncSelect() for the same socket. For example, to receive
notification for both reading and writing, the application must call
WSAAsyncSelect() with both FD_READ and FD_WRITE, as follows:

rc = WSAAsyncSelect(s, hWnd, wMsg, FD_READ|FD_WRITE);

It is not possible to specify different messages for different events. The
following code will not work; the second call will cancel the effects of

107

the first, and only FD_WRITE events will be reported with message
wMsg2:

rc = WSAAsyncSelect(s, hWnd, wMsg1, FD_READ);
rc = WSAAsyncSelect(s, hWnd, wMsg2, FD_WRITE);

To cancel all notification - i.e., to indicate that the Windows Sockets
implementation should send no further messages related to network
events on the socket - lEvent should be set to zero.

rc = WSAAsyncSelect(s, hWnd, 0, 0);

Although in this instance WSAAsyncSelect() immediately disables
event message posting for the socket, it is possible that messages may
be waiting in the application's message queue. The application must
therefore be prepared to receive network event messages even after
cancellation. Closing a socket with closesocket() also cancels
WSAAsyncSelect() message sending, but the same caveat about
messages in the queue prior to the closesocket() still applies.

Since an accept()'ed socket has the same properties as the listening
socket used to accept it, any WSAAsyncSelect() events set for the
listening socket apply to the accepted socket. For example, if a
listening socket has WSAAsyncSelect() events FD_ACCEPT, FD_READ,
and FD_WRITE, then any socket accepted on that listening socket will
also have FD_ACCEPT, FD_READ, and FD_WRITE events with the same
wMsg value used for messages. If a different wMsg or events are
desired, the application should call WSAAsyncSelect(), passing the
accepted socket and the desired new information.7

When one of the nominated network events occurs on the specified
socket s, the application's window hWnd receives message wMsg. The
wParam argument identifies the socket on which a network event has
occurred. The low word of lParam specifies the network event that has
occurred. The high word of lParam contains any error code. The error
code be any error as defined in winsock.h.

The error and event codes may be extracted from the lParam using the
macros WSAGETSELECTERROR and WSAGETSELECTEVENT, defined in
winsock.h as:

#define WSAGETSELECTERROR(lParam) HIWORD(lParam)
#define WSAGETSELECTEVENT(lParam) LOWORD(lParam)

The use of these macros will maximize the portability of the source
code for the application.

The possible network event codes which may be returned are as
follows:

Value Meaning
FD_READ Socket s ready for reading
FD_WRITE Socket s ready for writing
FD_OOB Out-of-band data ready for reading on socket s.

108

FD_ACCEPT Socket s ready for accepting a new incoming
connection

FD_CONNECT Connection on socket s completed
FD_CLOSE Connection identified by socket s has been closed

Return Value The return value is 0 if the
application's declaration of interest in the network event set was
successful. Otherwise the value SOCKET_ERROR is returned, and a
specific error number may be retrieved by calling
WSAGetLastError().

Comments Although WSAAsyncSelect() can be called with interest in multiple
events, the application window will receive a single message for each
network event.

As in the case of the select() function, WSAAsyncSelect() will
frequently be used to determine when a data transfer operation
(send() or recv()) can be issued with the expectation of immediate
success. Nevertheless, a robust application must be prepared for the
possibility that it may receive a message and issue a Windows Sockets
API call which returns WSAEWOULDBLOCK immediately. For example,
the following sequence of events is possible:

(i) data arrives on socket s; Windows Sockets posts
WSAAsyncSelect message

(ii) application processes some other message
(iii) while processing, application issues an ioctlsocket(s,

FIONREAD...) and notices that there is data ready to be
read

(iv) application issues a recv(s,...) to read the data
(v) application loops to process next message, eventually

reaching the WSAAsyncSelect message indicating that
data is ready to read

(vi) application issues recv(s,...), which fails with the error
WSAEWOULDBLOCK.

Other sequences are possible.

The Windows Sockets DLL will not continually flood an application with
messages for a particular network event. Having successfully posted
notification of a particular event to an application window, no further
message(s) for that network event will be posted to the application
window until the application makes the function call which implicitly
reenables notification of that network event.

Event Re-enabling function
FD_READ recv() or recvfrom()
FD_WRITE send() or sendto()
FD_OOB recv()
FD_ACCEPT accept()
FD_CONNECT NONE
FD_CLOSE NONE

109

Any call to the reenabling routine, even one which fails, results in
reenabling of message posting for the relevant event.

For FD_READ, FD_OOB, and FD_ACCEPT events, message posting is
"level-triggered." This means that if the reenabling routine is called
and the relevant event is still valid after the call, a WSAAsyncSelect()
message is posted to the application. This allows an application to be
event-driven and not concern itself with the amount of data that
arrives at any one time. Consider the following sequence:

(i) Windows Sockets DLL receives 100 bytes of data on
socket s and posts an FD_READ message.

(ii) The application issues recv(s, buffptr, 50, 0) to read
50 bytes.

(iii) The Windows Sockets DLL posts another FD_READ
message since there is still data to be read.

With these semantics, an application need not read all available data in
response to an FD_READ message--a single recv() in response to each
FD_READ message is appropriate. If an application issues multiple
recv() calls in response to a single FD_READ, it may receive multiple
FD_READ messages. Such an application may wish to disable FD_READ
messages before starting the recv() calls by calling
WSAAsyncSelect() with the FD_READ event not set.

If an event is true when the application initially calls
WSAAsyncSelect() or when the reenabling function is called, then a
message is posted as appropriate. For example, if an application calls
listen(), a connect attempt is made, then the application calls
WSAAsyncSelect() specifying that it wants to receive FD_ACCEPT
messages for the socket, the Windows Sockets implementation posts
an FD_ACCEPT message immediately.

The FD_WRITE event is handled slightly differently. An FD_WRITE
message is posted when a socket is first connected with connect() or
accepted with accept(), and then after a send() or sendto() fails with
WSAEWOULDBLOCK and buffer space becomes available. Therefore,
an application can assume that sends are possible starting from the
first FD_WRITE message and lasting until a send returns
WSAEWOULDBLOCK. After such a failure the application will be notified
that sends are again possible with an FD_WRITE message.

The FD_OOB event is used only when a socket is configured to receive
out-of-band data separately. If the socket is configured to receive out-
of-band data in-line, the out-of-band (expedited) data is treated as
normal data and the application should register an interest in, and will
receive, FD_READ events, not FD_OOB events. An application may set
or inspect the way in which out-of-band data is to be handled by using
setsockopt() or getsockopt() for the SO_OOBINLINE option.

The error code in an FD_CLOSE message indicates whether the socket
close was graceful or abortive. If the error code is 0, then the close
was graceful; if the error code is WSAECONNRESET, then the socket's
virtual socket was reset. This only applies to sockets of type

110

SOCK_STREAM.

The FD_CLOSE message is posted when a close indication is received
for the virtual circuit corresponding to the socket. In TCP terms, this
means that the FD_CLOSE is posted when the connection goes into the
FIN WAIT or CLOSE WAIT states. This results from the remote end
performing a shutdown() on the send side or a closesocket().

Please note your application will receive ONLY an FD_CLOSE message
to indicate closure of a virtual circuit. It will NOT receive an FD_READ
message to indicate this condition.

Error Codes WSANOTINITIALISED

A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAEINVAL Indicates that one of the specified
parameters was invalid

WSAEINPROGRESS A blocking Windows Sockets operation is
in progress.

Additional error codes may be set when an application window receives
a message. This error code is extracted from the lParam in the reply
message using the WSAGETSELECTERROR macro. Possible error codes
for each network event are:
Event: FD_CONNECT
Error Code

Meaning
WSAEADDRINUSE The specified address is already in use.

WSAEADDRNOTAVAIL The specified address is not available from
the local machine.

WSAEAFNOSUPPORT Addresses in the specified family cannot
be used with this socket.

WSAECONNREFUSED The attempt to connect was forcefully
rejected.

WSAEDESTADDRREQ A destination address is required.

WSAEFAULT The namelen argument is incorrect.

WSAEINVAL The socket is already bound to an address.

WSAEISCONN The socket is already connected.

111

WSAEMFILE No more file descriptors are available.

WSAENETUNREACH The network can't be reached from this
host at this time.

WSAENOBUFS No buffer space is available. The socket
cannot be connected.

WSAENOTCONN The socket is not connected.

WSAENOTSOCK The descriptor is a file, not a socket.

WSAETIMEDOUT Attempt to connect timed out without
establishing a connection

Event: FD_CLOSE
Error Code

Meaning
WSAENETDOWN The Windows Sockets implementation has

detected that the network subsystem has
failed.

WSAECONNRESET The connection was reset by the remote
side.

WSAECONNABORTED The connection was aborted due to
timeout or other failure.

Event: FD_READ
Event: FD_WRITE
Event: FD_OOB
Event: FD_ACCEPT
Error Code

Meaning
WSAENETDOWN The Windows Sockets implementation has

detected that the network subsystem has
failed.

Notes For
Windows Sockets
Suppliers It is the responsibility of the Windows Sockets Supplier to ensure that

messages are successfully posted to the application. If a
PostMessage() operation fails, the Windows Sockets implementation
MUST re-post that message as long as the window exists.

Windows Sockets suppliers should use the WSAMAKESELECTREPLY
macro when constructing the lParam in the message.

When a socket is closed, the Windows Sockets Supplier should purge
any messages remaining for posting to the application window.
However the application must be prepared to receive, and discard, any
messages which may have been posted prior to the closesocket().

112

See Also select()

113

4.3.8 WSACancelAsyncRequest()
Description Cancel an incomplete asynchronous operation.

#include <winsock.h>

int PASCAL FAR WSACancelAsyncRequest (HANDLE
hAsyncTaskHandle);

hAsyncTaskHandle Specifies the
asynchronous operation to be canceled.

Remarks The WSACancelAsyncRequest() function is used to cancel an
asynchronous operation which was initiated by one of the
WSAAsyncGetXByY() functions such as
WSAAsyncGetHostByName(). The operation to be canceled is
identified by the hAsyncTaskHandle parameter, which should be set to
the asynchronous task handle as returned by the initiating function.

Return Value The value returned by
WSACancelAsyncRequest() is 0 if the operation was successfully
canceled. Otherwise the value SOCKET_ERROR is returned, and a
specific error number may be retrieved by calling
WSAGetLastError().

Comments An attempt to cancel an existing asynchronous WSAAsyncGetXByY()
operation can fail with an error code of WSAEALREADY for two reasons.
First, the original operation has already completed and the application
has dealt with the resultant message. Second, the original operation
has already completed but the resultant message is still waiting in the
application window queue.

Notes For
Windows Sockets
Suppliers It is unclear whether the application can usefully distinguish between

WSAEINVAL and WSAEALREADY, since in both cases the error indicates
that there is no asynchronous operation in progress with the indicated
handle. [Trivial exception: 0 is always an invalid asynchronous task
handle.] The Windows Sockets specification does not prescribe how a
conformant Windows Sockets implementation should distinguish
between the two cases. For maximum portability, a Windows Sockets
application should treat the two errors as equivalent.

Error Codes WSANOTINITIALISED

A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAEINVAL Indicates that the specified asynchronous
114

task handle was invalid

WSAEINPROGRESS A blocking Windows Sockets operation is
in progress.

WSAEALREADY The asynchronous routine being canceled
has already completed.

See Also WSAAsyncGetHostByAddr(), WSAAsyncGetHostByName(),
WSAAsyncGetProtoByNumber(), WSAAsyncGetProtoByName(),
WSAAsyncGetHostByName(), WSAAsyncGetServByPort(),
WSAAsyncGetServByName().

115

4.3.9 WSACancelBlockingCall()
Description Cancel a blocking call which is currently in progress.

#include <winsock.h>

int PASCAL FAR WSACancelBlockingCall (void);

Remarks This function cancels any outstanding blocking operation for this task.
It is normally used in two situations:

(1) An application is processing a message which has been received
while a blocking call is in progress. In this case, WSAIsBlocking() will
be true.

(2) A blocking call is in progress, and Windows Sockets has called back
to the application's "blocking hook" function (as established by
WSASetBlockingHook()).

In each case, the original blocking call will terminate as soon as
possible with the error WSAEINTR. (In (1), the termination will not take
place until Windows message scheduling has caused control to revert
to the blocking routine in Windows Sockets. In (2), the blocking call will
be terminated as soon as the blocking hook function completes.)

In the case of a blocking connect() operation, the Windows Sockets
implementation will terminate the blocking call as soon as possible, but
it may not be possible for the socket resources to be released until the
connection has completed (and then been reset) or timed out. This is
likely to be noticeable only if the application immediately tries to open
a new socket (if no sockets are available), or to connect() to the same
peer.

Cancelling an accept() or a select() call does not adversely impact
the sockets passed to these calls. Only the particular call fails; any
operation that was legal before the cancel is legal after the cancel, and
the state of the socket is not affected in any way.

Cancelling any operation other than accept() and select() can leave
the socket in an indeterminate state. If an application cancels a
blocking operation on a socket, the only operation that the application
can depend on being able to perform on the socket is a call to
closesocket(), although other operations may work on some Windows
Sockets implementations. If an application desires maximum
portability, it must be careful not to depend on performing operations
after a cancel. An application may reset the connection by setting the
timeout on SO_LINGER to 0.

If a cancel operation compromised the integrity of a SOCK_STREAM's
data stream in any way, the Windows Sockets implementation must
reset the connection and fail all future operations other than
closesocket() with WSAECONNABORTED.

Return Value The value returned by
WSACancelBlockingCall() is 0 if the operation was successfully

116

canceled. Otherwise the value SOCKET_ERROR is returned, and a
specific error number may be retrieved by calling
WSAGetLastError().

Comments Note that it is possible that the network operation completes before
the WSACancelBlockingCall() is processed, for example if data is
received into the user buffer at interrupt time while the application is in
a blocking hook. In this case, the blocking operation will return
successfully as if WSACancelBlockingCall() had never been called.
Note that the WSACancelBlockingCall() still succeeds in this case;
the only way to know with certainty that an operation was actually
canceled is to check for a return code of WSAEINTR from the blocking
call.

Error Codes WSANOTINITIALISED

A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAEINVAL Indicates that there is no outstanding
blocking call.

117

4.3.10 WSACleanup()
Description Terminate use of the Windows Sockets DLL.

#include <winsock.h>

int PASCAL FAR WSACleanup (void);

Remarks An application or DLL is required to perform a (successful)
WSAStartup() call before it can use Windows Sockets services. When
it has completed the use of Windows Sockets, the application or DLL
must call WSACleanup() to deregister itself from a Windows Sockets
implementation and allow the implementation to free any resources
allocated on behalf of the application or DLL. Any open SOCK_STREAM
sockets that are connected when WSACleanup() is called are reset;
sockets which have been closed with closesocket() but which still
have pending data to be sent are not affected--the pending data is still
sent.

There must be a call to WSACleanup() for every call to
WSAStartup() made by a task. Only the final WSACleanup() for
that task does the actual cleanup; the preceding calls simply
decrement an internal reference count in the Windows Sockets DLL. A
naive application may ensure that WSACleanup() was called enough
times by calling WSACleanup() in a loop until it returns
WSANOTINITIALISED.

Return Value The return value is 0 if the
operation was successful. Otherwise the value SOCKET_ERROR is
returned, and a specific error number may be retrieved by calling
WSAGetLastError().

Comments Attempting to call WSACleanup() from within a blocking hook and
then failing to check the return code is a common Windows Sockets
programming error. If an application needs to quit while a blocking call
is outstanding, the application must first cancel the blocking call with
WSACancelBlockingCall() then issue the WSACleanup() call once
control has been returned to the application.

Notes For
Windows Sockets
Suppliers Well-behaved Windows Sockets applications will make a

WSACleanup() call to indicate deregistration from a Windows Sockets
implementation. This function can thus, for example, be utilized to
free up resources allocated to the specific application.

A Windows Sockets implementation must be prepared to deal with an
application which terminates without invoking WSACleanup() - for
example, as a result of an error.

In a multithreaded environment, WSACleanup() terminates Windows
Sockets operations for all threads.

A Windows Sockets implementation must ensure that WSACleanup()
leaves things in a state in which the application can invoke

118

WSAStartup() to re-establish Windows Sockets usage.

Error Codes WSANOTINITIALISED

A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAEINPROGRESS A blocking Windows Sockets operation is
in progress.

See Also WSAStartup()

119

4.3.11 WSAGetLastError()
Description Get the error status for the last operation which failed.

#include <winsock.h>

int PASCAL FAR WSAGetLastError (void);

Remarks This function returns the last network error that occurred. When a
particular Windows Sockets API function indicates that an error has
occurred, this function should be called to retrieve the appropriate
error code.

Return Value The return value indicates
the error code for the last Windows Sockets API routine performed by
this thread.

Notes For
Windows Sockets
Suppliers The use of the WSAGetLastError() function to retrieve the last error

code, rather than relying on a global error variable (cf. errno), is
required in order to provide compatibility with future multi-threaded
environments.

Note that in a nonpreemptive Windows environment
WSAGetLastError() is used to retrieve only Windows Sockets API
errors. In a preemptive environment, WSAGetLastError() will invoke
GetLastError(), which is used to retrieve the error status for all Win32
API functions on a per-thread basis. For portability, an application
should use WSAGetLastError() immediately after the Windows
Sockets API function which failed.

See Also WSASetLastError()

120

4.3.12 WSAIsBlocking()
Description Determine if a blocking call is in progress.

#include <winsock.h>

BOOL PASCAL FAR WSAIsBlocking (void);

Remarks This function allows a task to determine if it is executing while waiting
for a previous blocking call to complete.

Return Value The return value is TRUE if
there is an outstanding blocking function awaiting completion.
Otherwise, it is FALSE.

Comments Although a call issued on a blocking socket appears to an application
program as though it "blocks", the Windows Sockets DLL has to
relinquish the processor to allow other applications to run. This means
that it is possible for the application which issued the blocking call to
be re-entered, depending on the message(s) it receives. In this
instance, the WSAIsBlocking() function can be used to ascertain
whether the task has been re-entered while waiting for an outstanding
blocking call to complete. Note that Windows Sockets prohibits more
than one outstanding call per thread.

Notes For
Windows Sockets
Suppliers A Windows Sockets implementation must prohibit more than one

outstanding blocking call per thread.

121

4.3.13 WSASetBlockingHook()
Description Establish an application-specific blocking hook function.

#include <winsock.h>

FARPROC PASCAL FAR WSASetBlockingHook (FARPROC
lpBlockFunc);

lpBlockFunc A pointer to the procedure instance address of the
blocking function to be installed.

Remarks This function installs a new function which a Windows Sockets
implementation should use to implement blocking socket function
calls.

A Windows Sockets implementation includes a default mechanism by
which blocking socket functions are implemented. The function
WSASetBlockingHook() gives the application the ability to execute
its own function at "blocking" time in place of the default function.

When an application invokes a blocking Windows Sockets API
operation, the Windows Sockets implementation initiates the operation
and then enters a loop which is similar to the following pseudocode:

for(;;) {
 /* flush messages for good user response */
 while(BlockingHook())
 ;
 /* check for WSACancelBlockingCall() */
 if(operation_cancelled())
 break;
 /* check to see if operation completed */
 if(operation_complete())
 break; /* normal completion */
}

Note that Windows Sockets implementations may perform the above
steps in a different order; for example, the check for operation
complete may occur before calling the blocking hook. The default
BlockingHook() function is equivalent to:

BOOL DefaultBlockingHook(void) {
 MSG msg;
 BOOL ret;
 /* get the next message if any */
 ret = (BOOL)PeekMessage(&msg,NULL,0,0,PM_REMOVE);
 /* if we got one, process it */
 if (ret) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 /* TRUE if we got a message */
 return ret;

122

}

The WSASetBlockingHook() function is provided to support those
applications which require more complex message processing - for
example, those employing the MDI (multiple document interface)
model. It is not intended as a mechanism for performing general
applications functions. In particular, the only Windows Sockets API
function which may be issued from a custom blocking hook function is
WSACancelBlockingCall(), which will cause the blocking loop to
terminate.

This function must be implemented on a per-task basis for non-
multithreaded versions of Windows and on a per-thread basis for
multithreaded versions of Windows such as Windows NT. It thus
provides for a particular task or thread to replace the blocking
mechanism without affecting other tasks or threads.

In multithreaded versions of Windows, there is no default blocking
hook--blocking calls block the thread that makes the call. However, an
application may install a specific blocking hook by calling
WSASetBlockingHook().
This allows easy portability of applications that depend on the blocking
hook behavior.

Return Value The return value is a pointer
to the procedure-instance of the previously installed blocking function.
The application or library that calls the WSASetBlockingHook ()
function should save this return value so that it can be restored if
necessary. (If "nesting" is not important, the application may simply
discard the value returned by WSASetBlockingHook() and eventually
use WSAUnhookBlockingHook() to restore the default mechanism.)
If the operation fails, a NULL pointer is returned, and a specific error
number may be retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED

A successful WSAStartup() must occur
before using this API.

WSAENETDOWN The Windows Sockets implementation has
detected that the network subsystem has
failed.

WSAEINPROGRESS A blocking Windows Sockets operation is
in progress.

See Also WSAUnhookBlockingHook()

123

4.3.14 WSASetLastError()
Description Set the error code which can be retrieved by WSAGetLastError().

#include <winsock.h>

void PASCAL FAR WSASetLastError
(int iError);

Remarks This function allows an application to set the error code to be returned
by a subsequent WSAGetLastError() call for the current thread. Note
that any subsequent Windows Sockets routine called by the application
will override the error code as set by this routine.

iError Specifies the error code to be returned by a subsequent
WSAGetLastError() call.

Notes For
Windows Sockets
Suppliers In a Win32 environment, this function will
invoke SetLastError().

Return Value None.

Error Codes WSANOTINITIALISED

A successful WSAStartup() must occur
before using this API.

See Also WSAGetLastError()

124

4.3.15 WSAStartup()
Description

#include <winsock.h>

int PASCAL FAR WSAStartup (WORD wVersionRequested,
LPWSADATA lpWSAData);

wVersionRequested The highest version of Windows Sockets API
support that the caller can use. The high order
byte specifies the minor version (revision)
number; the low-order byte specifies the major
version number.

lpWSAData A pointer to the WSADATA data structure that is
to receive details of the Windows Sockets
implementation.

Remarks This function MUST be the first Windows Sockets function called by an
application or DLL. It allows an application or DLL to specify the
version of Windows Sockets API required and to retrieve details of the
specific Windows Sockets implementation. The application or DLL may
only issue further Windows Sockets API functions after a successful
WSAStartup() invocation.

In order to support future Windows Sockets implementations and
applications which may have functionality differences from Windows
Sockets 1.1, a negotiation takes place in WSAStartup(). The caller of
WSAStartup() and the Windows Sockets DLL indicate to each other
the highest version that they can support, and each confirms that the
other's highest version is acceptable. Upon entry to WSAStartup(),
the Windows Sockets DLL examines the version requested by the
application. If this version is higher than the lowest version supported
by the DLL, the call succeeds and the DLL returns in wHighVersion the
highest version it supports and in wVersion the minimum of its high
version and wVersionRequested. The Windows Sockets DLL then
assumes that the application will use wVersion. If the wVersion field of
the WSADATA structure is unacceptable to the caller, it should call
WSACleanup() and either search for another Windows Sockets DLL or
fail to initialize.

This negotiation allows both a Windows Sockets DLL and a Windows
Sockets application to support a range of Windows Sockets versions.
An application can successfully utilize a Windows Sockets DLL if there
is any overlap in the version ranges. The following chart gives
examples of how WSAStartup() works in conjunction with different
application and Windows Sockets DLL versions:

App versions
DLL Versions
wVersionRequested
wVersion
wHighVersion
End Result

125

1.1
1.1
1.1
1.1
1.1
use 1.1
1.0 1.1
1.0
1.1
1.0
1.0
use 1.0
1.0
1.0 1.1
1.0
1.0
1.1
use 1.0
1.1
1.0 1.1
1.1
1.1
1.1
use 1.1
1.1
1.0
1.1
1.0
1.0
Application fails
1.0
1.1
1.0

WSAVERNOTSUPPORTED
1.0 1.1
1.0 1.1
1.1
1.1
1.1
use 1.1
1.1 2.0
1.1
2.0
1.1
1.1
use 1.1
2.0
1.1
2.0
1.1
1.1
Application fails

The following code fragment demonstrates how an application which
supports only version 1.1 of Windows Sockets makes a WSAStartup()
call:

WORD wVersionRequested;
WSADATA wsaData;
int err;

wVersionRequested = MAKEWORD(1, 1);

126

err = WSAStartup(wVersionRequested, &wsaData);
if (err != 0) {
 /* Tell the user that we couldn't find a useable */
 /* winsock.dll. */
 return;
}

/* Confirm that the Windows Sockets DLL supports 1.1.*/
/* Note that if the DLL supports versions greater */
/* than 1.1 in addition to 1.1, it will still return */
/* 1.1 in wVersion since that is the version we */
/* requested. */

if (LOBYTE(wsaData.wVersion) != 1 ||
 HIBYTE(wsaData.wVersion) != 1) {
 /* Tell the user that we couldn't find a useable */
 /* winsock.dll. */
 WSACleanup();
 return;
}

/* The Windows Sockets DLL is acceptable. Proceed. */

And this code fragment demonstrates how a Windows Sockets DLL
which supports only version 1.1 performs the WSAStartup()
negotiation:

/* Make sure that the version requested is >= 1.1. */
/* The low byte is the major version and the high */
/* byte is the minor version. */

if (LOBYTE(wVersionRequested) < 1 ||
 (LOBYTE(wVersionRequested) == 1 &&
 HIBYTE(wVersionRequested) < 1) {
 return WSAVERNOTSUPPORTED;
}

/* Since we only support 1.1, set both wVersion and */
/* wHighVersion to 1.1. */

lpWsaData->wVersion = MAKEWORD(1, 1);
lpWsaData->wHighVersion = MAKEWORD(1, 1);

Once an application or DLL has made a successful WSAStartup() call,
it may proceed to make other Windows Sockets API calls as needed.
When it has finished using the services of the Windows Sockets DLL,
the application or DLL must call WSACleanup() in order to allow the
Windows Sockets DLL to free any resources for the application.

Details of the actual Windows Sockets implementation are described in
the WSAData structure defined as follows:

struct WSAData {
WORD

wVersion;
127

WORD
wHighVersion;

char
szDescription[WSADESCRIPTION_LEN+1];

char
szSystemStatus[WSASYSSTATUS_LEN+1];

unsigned short
iMaxSockets;

unsigned short
iMaxUdpDg;

char FAR *
lpVendorInfo;
};

The members of this structure are:
Element Usage
wVersion The version of the Windows Sockets specification that

the Windows Sockets DLL expects the caller to use.
wHighVersion The highest version of the Windows Sockets specification

that this DLL can support (also encoded as above).
Normally this will be the same as wVersion.

szDescription A null-terminated ASCII string into which the Windows
Sockets DLL copies a description of the Windows Sockets
implementation, including vendor identification. The
text (up to 256 characters in length) may contain any
characters, but vendors are cautioned against including
control and formatting characters: the most likely use
that an application will put this to is to display it
(possibly truncated) in a status message.

szSystemStatus A null-
terminated ASCII string into which the Windows Sockets
DLL copies relevant status or configuration information.
The Windows Sockets DLL should use this field only if the
information might be useful to the user or support staff:
it should not be considered as an extension of the
szDescription field.

iMaxSockets The maximum number of sockets which a single process
can potentially open. A Windows Sockets
implementation may provide a global pool of sockets for
allocation to any process; alternatively it may allocate
per-process resources for sockets. The number may well
reflect the way in which the Windows Sockets DLL or the
networking software was configured. Application writers
may use this number as a crude indication of whether
the Windows Sockets implementation is usable by the
application. For example, an X Windows server might
check iMaxSockets when first started: if it is less than 8,
the application would display an error message
instructing the user to reconfigure the networking
software. (This is a situation in which the
szSystemStatus text might be used.) Obviously there is
no guarantee that a particular application can actually
allocate iMaxSockets sockets, since there may be other
Windows Sockets applications in use.

128

iMaxUdpDg The size in bytes of the largest UDP datagram that can
be sent or received by a Windows Sockets application. If
the implementation imposes no limit, iMaxUdpDg is zero.
In many implementations of Berkeley sockets, there is
an implicit limit of 8192 bytes on UDP datagrams (which
are fragmented if necessary). A Windows Sockets
implementation may impose a limit based, for instance,
on the allocation of fragment reassembly buffers. The
minimum value of iMaxUdpDg for a compliant Windows
Sockets implementation is 512. Note that regardless of
the value of iMaxUdpDg, it is inadvisable to attempt to
send a broadcast datagram which is larger than the
Maximum Transmission Unit (MTU) for the network. (The
Windows Sockets API does not provide a mechanism to
discover the MTU, but it must be no less than 512 bytes.)

lpVendorInfo A far pointer to a vendor-specific data structure. The
definition of this structure (if supplied) is beyond the
scope of this specification.

An application or DLL may call WSAStartup() more than once if it
needs to obtain the WSAData structure information more than once.
However, the wVersionRequired parameter is assumed to be the same
on all calls to WSAStartup(); that is, an application or DLL cannot
change the version of Windows Sockets it expects after the initial call
to WSAStartup().

There must be one WSACleanup() call corresponding to every
WSAStartup() call to allow third-party DLLs to make use of a Windows
Sockets DLL on behalf of an application. This means, for example, that
if an application calls WSAStartup() three times, it must call
WSACleanup() three times. The first two calls to WSACleanup() do
nothing except decrement an internal counter; the final
WSACleanup() call for the task does all necessary resource
deallocation for the task.

Return Value WSAStartup() returns zero
if successful. Otherwise it returns one of the error codes listed below.
Note that the normal mechanism whereby the application calls
WSAGetLastError() to determine the error code cannot be used,
since the Windows Sockets DLL may not have established the client
data area where the "last error" information is stored.

Notes For
Windows Sockets
Suppliers Each Windows Sockets application MUST make a WSAStartup() call

before issuing any other Windows Sockets API calls. This function can
thus be utilized for initialization purposes.

Further issues are discussed in the notes for WSACleanup().

Error Codes WSASYSNOTREADY

Indicates that the underlying network
129

subsystem is not ready for network
communication.

WSAVERNOTSUPPORTED
The version of Windows Sockets API support requested is not provided

by this particular Windows Sockets
implementation.

WSAEINVAL The Windows Sockets version specified by
the application is not supported by this
DLL.

See Also send(), sendto(), WSACleanup()

130

4.3.16 WSAUnhookBlockingHook()
Description Restore the default blocking hook function.

#include <winsock.h>

int PASCAL FAR WSAUnhookBlockingHook (void);

Remarks This function removes any previous blocking hook that has been
installed and reinstalls the default blocking mechanism.

WSAUnhookBlockingHook() will always install the default
mechanism, not the previous mechanism. If an application wish to
nest blocking hooks - i.e. to establish a temporary blocking hook
function and then revert to the previous mechanism (whether the
default or one established by an earlier WSASetBlockingHook()) - it
must save and restore the value returned by
WSASetBlockingHook(); it cannot use
WSAUnhookBlockingHook().

In multithreaded versions of Windows such as Windows NT, there is no
default blocking hook. Calling WSAUnhookBlockingHook() disables
any blocking hook installed by the application and any blocking calls
made block the thread which made the call.

Return Value The return value is 0 if the
operation was successful. Otherwise the value SOCKET_ERROR is
returned, and a specific error number may be retrieved by calling
WSAGetLastError().

Error Codes WSANOTINITIALISED

A successful WSAStartup() must occur
before using this API.

See Also WSASetBlockingHook()

131

Appendix A. Error Codes and Header Files
A.1 Error Codes
The following is a list of possible error codes returned by the WSAGetLastError()
call, along with their explanations. The error numbers are consistently set across all
Windows Sockets-compliant implementations.
Windows Sockets code
Berkeley equivalent
Error
Interpretation
WSAEINTR
EINTR
10004
As in standard C
WSAEBADF
EBADF
10009
As in standard C
WSAEACCES
EACCES
10013
As in standard C
WSAEFAULT
EFAULT
10014
As in standard C
WSAEINVAL
EINVAL
10022
As in standard C
WSAEMFILE
EMFILE
10024
As in standard C
WSAEWOULDBLOCK
EWOULDBLOCK
10035
As in BSD
WSAEINPROGRESS
EINPROGRESS
10036
This error is returned if any
Windows Sockets API function is
called while a blocking function is
in progress.
WSAEALREADY
EALREADY
10037
As in BSD
WSAENOTSOCK
ENOTSOCK
10038
As in BSD
WSAEDESTADDRREQ
EDESTADDRREQ
10039
As in BSD
WSAEMSGSIZE
EMSGSIZE
10040
As in BSD
WSAEPROTOTYPE
EPROTOTYPE
10041
As in BSD
WSAENOPROTOOPT
ENOPROTOOPT

132

10042
As in BSD
WSAEPROTONOSUPPORT
EPROTONOSUPPORT
10043
As in BSD
WSAESOCKTNOSUPPORT
ESOCKTNOSUPPORT
10044
As in BSD
WSAEOPNOTSUPP
EOPNOTSUPP
10045
As in BSD
WSAEPFNOSUPPORT
EPFNOSUPPORT
10046
As in BSD
WSAEAFNOSUPPORT
EAFNOSUPPORT
10047
As in BSD
WSAEADDRINUSE
EADDRINUSE
10048
As in BSD
WSAEADDRNOTAVAIL
EADDRNOTAVAIL
10049
As in BSD
WSAENETDOWN
ENETDOWN
10050
As in BSD. This error may be reported at any time if the Windows Sockets implementation
detects an underlying failure.
WSAENETUNREACH
ENETUNREACH
10051
As in BSD
WSAENETRESET
ENETRESET
10052
As in BSD
WSAECONNABORTED
ECONNABORTED
10053
As in BSD
WSAECONNRESET
ECONNRESET
10054
As in BSD
WSAENOBUFS
ENOBUFS
10055
As in BSD
WSAEISCONN
EISCONN
10056
As in BSD
WSAENOTCONN
ENOTCONN
10057
As in BSD
WSAESHUTDOWN
ESHUTDOWN
10058
As in BSD
WSAETOOMANYREFS
ETOOMANYREFS
10059

133

As in BSD
WSAETIMEDOUT
ETIMEDOUT
10060
As in BSD
WSAECONNREFUSED
ECONNREFUSED
10061
As in BSD
WSAELOOP
ELOOP
10062
As in BSD
WSAENAMETOOLONG
ENAMETOOLONG
10063
As in BSD
WSAEHOSTDOWN
EHOSTDOWN
10064
As in BSD
WSAEHOSTUNREACH
EHOSTUNREACH
10065
As in BSD
WSASYSNOTREADY

10091
Returned by WSAStartup()
indicating that the network subsystem is unusable.
WSAVERNOTSUPPORTED

10092
Returned by WSAStartup()
indicating that the Windows Sockets
DLL cannot support this app.
WSANOTINITIALISED

10093
Returned by any function except WSAStartup() indicating that a successful WSAStartup() has
not yet been performed.
WSAHOST_NOT_FOUND
HOST_NOT_FOUND
11001
As in BSD.
WSATRY_AGAIN
TRY_AGAIN
11002
As in BSD
WSANO_RECOVERY
NO_RECOVERY
11003
As in BSD
WSANO_DATA
NO_DATA
11004
As in BSD

The first set of definitions is present to resolve contentions between standard C error
codes which may be defined inconsistently between various C compilers.

The second set of definitions provides Windows Sockets versions of regular Berkeley
Sockets error codes.

The third set of definitions consists of extended Windows Sockets-specific error
codes.

134

The fourth set of errors are returned by Windows Sockets getXbyY() and
WSAAsyncGetXByY() functions, and correspond to the errors which in Berkeley
software would be returned in the h_errno variable. They correspond to various
failures which may be returned by the Domain Name Service. If the Windows Sockets
implementation does not use the DNS, it will use the most appropriate code. In
general, a Windows Sockets application should interpret WSAHOST_NOT_FOUND and
WSANO_DATA as indicating that the key (name, address, etc.) was not found,, while
WSATRY_AGAIN and WSANO_RECOVERY suggest that the name service itself is non-
operational.

The error numbers are derived from the winsock.h header file listed in section , and
are based on the fact that Windows Sockets error numbers are computed by adding
10000 to the "normal" Berkeley error number.

Note that this table does not include all of the error codes defined in winsock.h.
This is because it includes only errors which might reasonably be returned by a
Windows Sockets implementation: winsock.h, on the other hand, includes a full set
of BSD definitions to ensure compatibility with ported software.

135

A.2 Header Files
A.2.1 Berkeley Header Files
A Windows Sockets supplier who provides a development kit to support the
development of Windows Sockets applications must supply a set of vestigial header
files with names that match a number of the header files in the Berkeley software
distribution. These files are provided for source code compatibility only, and each
consists of three lines:
#ifndef _WINSOCKAPI_
#include <winsock.h>
#endif

The header files provided for compatibility are:
netdb.h
arpa/inet.h
sys/time.h
sys/socket.h
netinet/in.h

The file winsock.h contains all of the type and structure definitions, constants,
macros, and function prototypes used by the Windows Sockets specification. An
application writer may choose to ignore the compatibility headers and include
winsock.h in each source file.

136

A.2.2 Windows Sockets Header File - winsock.h
The winsock.h header file includes a number of types and definitions from the
standard Windows header file windows.h. The windows.h in the Windows 3.0 SDK
(Software Developer's Kit) lacks a #include guard, so if you need to include
windows.h as well as winsock.h, you should define the symbol _INC_WINDOWS
before #including winsock.h, as follows:

#include <windows.h>
#define _INC_WINDOWS
#include <winsock.h>

Users of the SDK for Windows 3.1 and later need not do this.

A Windows Sockets DLL vendor MUST NOT make any modifications to this header
file which could impact binary compatibility of Windows Sockets applications. The
constant values, function parameters and return codes, and the like must remain
consistent across all Windows Sockets DLL vendors.

/* WINSOCK.H--definitions to be used with the WINSOCK.DLL
*
* This header file corresponds to version 1.1 of the Windows Sockets specification.
*
* This file includes parts which are Copyright (c) 1982-1986 Regents
* of the University of California. All rights reserved. The
* Berkeley Software License Agreement specifies the terms and
* conditions for redistribution.
*/

#ifndef _WINSOCKAPI_
#define _WINSOCKAPI_

/*
* Pull in WINDOWS.H if necessary
*/
#ifndef _INC_WINDOWS
#include <windows.h>
#endif /* _INC_WINDOWS */

/*
* Basic system type definitions, taken from the BSD file sys/types.h.
*/
typedef unsigned char u_char;
typedef unsigned short u_short;
typedef unsigned int u_int;
typedef unsigned long u_long;

/*
* The new type to be used in all
* instances which refer to sockets.
*/
typedef u_int SOCKET;

/*
* Select uses arrays of SOCKETs. These macros manipulate such
* arrays. FD_SETSIZE may be defined by the user before including
* this file, but the default here should be >= 64.
*
* CAVEAT IMPLEMENTOR and USER: THESE MACROS AND TYPES MUST BE
* INCLUDED IN WINSOCK.H EXACTLY AS SHOWN HERE.
*/
#ifndef FD_SETSIZE
#define FD_SETSIZE 64
#endif /* FD_SETSIZE */

137

typedef struct fd_set {
 u_short fd_count; /* how many are SET? */
 SOCKET fd_array[FD_SETSIZE]; /* an array of SOCKETs */
} fd_set;

extern int PASCAL FAR __WSAFDIsSet(SOCKET, fd_set FAR *);

#define FD_CLR(fd, set) do { \
 u_int __i; \
 for (__i = 0; __i < ((fd_set FAR *)(set))->fd_count ; __i++) { \
 if (((fd_set FAR *)(set))->fd_array[__i] == fd) { \
 while (__i < ((fd_set FAR *)(set))->fd_count-1) { \
 ((fd_set FAR *)(set))->fd_array[__i] = \
 ((fd_set FAR *)(set))->fd_array[__i+1]; \
 __i++; \
 } \
 ((fd_set FAR *)(set))->fd_count--; \
 break; \
 } \
 } \
} while(0)

#define FD_SET(fd, set) do { \
 if (((fd_set FAR *)(set))->fd_count < FD_SETSIZE) \
 ((fd_set FAR *)(set))->fd_array[((fd_set FAR *)(set))->fd_count++]=fd;\
} while(0)

#define FD_ZERO(set) (((fd_set FAR *)(set))->fd_count=0)

#define FD_ISSET(fd, set) __WSAFDIsSet((SOCKET)fd, (fd_set FAR *)set)

/*
* Structure used in select() call, taken from the BSD file sys/time.h.
*/
struct timeval {
 long tv_sec; /* seconds */
 long tv_usec; /* and microseconds */
};

/*
* Operations on timevals.
*
* NB: timercmp does not work for >= or <=.
*/
#define timerisset(tvp) ((tvp)->tv_sec || (tvp)->tv_usec)
#define timercmp(tvp, uvp, cmp) \
 ((tvp)->tv_sec cmp (uvp)->tv_sec || \
 (tvp)->tv_sec == (uvp)->tv_sec && (tvp)->tv_usec cmp (uvp)->tv_usec)
#define timerclear(tvp) (tvp)->tv_sec = (tvp)->tv_usec = 0

/*
* Commands for ioctlsocket(), taken from the BSD file fcntl.h.
*
*
* Ioctl's have the command encoded in the lower word,
* and the size of any in or out parameters in the upper
* word. The high 2 bits of the upper word are used
* to encode the in/out status of the parameter; for now
* we restrict parameters to at most 128 bytes.
*/
#define IOCPARM_MASK 0x7f /* parameters must be < 128 bytes */
#define IOC_VOID 0x20000000 /* no parameters */
#define IOC_OUT 0x40000000 /* copy out parameters */
#define IOC_IN 0x80000000 /* copy in parameters */
#define IOC_INOUT (IOC_IN|IOC_OUT)
 /* 0x20000000 distinguishes new &
 old ioctl's */
#define _IO(x,y) (IOC_VOID|(x<<8)|y)

138

#define _IOR(x,y,t) (IOC_OUT|(((long)sizeof(t)&IOCPARM_MASK)<<16)|(x<<8)|y)

#define _IOW(x,y,t) (IOC_IN|(((long)sizeof(t)&IOCPARM_MASK)<<16)|(x<<8)|y)

#define FIONREAD _IOR('f', 127, u_long) /* get # bytes to read */
#define FIONBIO _IOW('f', 126, u_long) /* set/clear non-blocking i/o */
#define FIOASYNC _IOW('f', 125, u_long) /* set/clear async i/o */

/* Socket I/O Controls */
#define SIOCSHIWAT _IOW('s', 0, u_long) /* set high watermark */
#define SIOCGHIWAT _IOR('s', 1, u_long) /* get high watermark */
#define SIOCSLOWAT _IOW('s', 2, u_long) /* set low watermark */
#define SIOCGLOWAT _IOR('s', 3, u_long) /* get low watermark */
#define SIOCATMARK _IOR('s', 7, u_long) /* at oob mark? */

/*
* Structures returned by network data base library, taken from the
* BSD file netdb.h. All addresses are supplied in host order, and
* returned in network order (suitable for use in system calls).
*/

struct hostent {
 char FAR * h_name; /* official name of host */
 char FAR * FAR * h_aliases; /* alias list */
 short h_addrtype; /* host address type */
 short h_length; /* length of address */
 char FAR * FAR * h_addr_list; /* list of addresses */
#define h_addr h_addr_list[0] /* address, for backward compat */
};

/*
* It is assumed here that a network number
* fits in 32 bits.
*/
struct netent {
 char FAR * n_name; /* official name of net */
 char FAR * FAR * n_aliases; /* alias list */
 short n_addrtype; /* net address type */
 u_long n_net; /* network # */
};

struct servent {
 char FAR * s_name; /* official service name */
 char FAR * FAR * s_aliases; /* alias list */
 short s_port; /* port # */
 char FAR * s_proto; /* protocol to use */
};

struct protoent {
 char FAR * p_name; /* official protocol name */
 char FAR * FAR * p_aliases; /* alias list */
 short p_proto; /* protocol # */
};

/*
* Constants and structures defined by the internet system,
* Per RFC 790, September 1981, taken from the BSD file netinet/in.h.
*/

/*
* Protocols
*/
#define IPPROTO_IP 0 /* dummy for IP */
#define IPPROTO_ICMP 1 /* control message protocol */
#define IPPROTO_GGP 2 /* gateway^2 (deprecated) */
#define IPPROTO_TCP 6 /* tcp */
#define IPPROTO_PUP 12 /* pup */
#define IPPROTO_UDP 17 /* user datagram protocol */
#define IPPROTO_IDP 22 /* xns idp */
#define IPPROTO_ND 77 /* UNOFFICIAL net disk proto */

139

#define IPPROTO_RAW 255 /* raw IP packet */
#define IPPROTO_MAX 256

/*
* Port/socket numbers: network standard functions
*/
#define IPPORT_ECHO 7
#define IPPORT_DISCARD 9
#define IPPORT_SYSTAT 11
#define IPPORT_DAYTIME 13
#define IPPORT_NETSTAT 15
#define IPPORT_FTP 21
#define IPPORT_TELNET 23
#define IPPORT_SMTP 25
#define IPPORT_TIMESERVER 37
#define IPPORT_NAMESERVER 42
#define IPPORT_WHOIS 43
#define IPPORT_MTP 57

/*
* Port/socket numbers: host specific functions
*/
#define IPPORT_TFTP 69
#define IPPORT_RJE 77
#define IPPORT_FINGER 79
#define IPPORT_TTYLINK 87
#define IPPORT_SUPDUP 95

/*
* UNIX TCP sockets
*/
#define IPPORT_EXECSERVER 512
#define IPPORT_LOGINSERVER 513
#define IPPORT_CMDSERVER 514
#define IPPORT_EFSSERVER 520

/*
* UNIX UDP sockets
*/
#define IPPORT_BIFFUDP 512
#define IPPORT_WHOSERVER 513
#define IPPORT_ROUTESERVER 520
 /* 520+1 also used */

/*
* Ports < IPPORT_RESERVED are reserved for
* privileged processes (e.g. root).
*/
#define IPPORT_RESERVED 1024

/*
* Link numbers
*/
#define IMPLINK_IP 155
#define IMPLINK_LOWEXPER 156
#define IMPLINK_HIGHEXPER 158

/*
* Internet address (old style... should be updated)
*/
struct in_addr {
 union {
 struct { u_char s_b1,s_b2,s_b3,s_b4; } S_un_b;
 struct { u_short s_w1,s_w2; } S_un_w;
 u_long S_addr;
 } S_un;
#define s_addr S_un.S_addr
 /* can be used for most tcp & ip code */
#define s_host S_un.S_un_b.s_b2

140

 /* host on imp */
#define s_net S_un.S_un_b.s_b1
 /* network */
#define s_imp S_un.S_un_w.s_w2
 /* imp */
#define s_impno S_un.S_un_b.s_b4
 /* imp # */
#define s_lh S_un.S_un_b.s_b3
 /* logical host */
};

/*
* Definitions of bits in internet address integers.
* On subnets, the decomposition of addresses to host and net parts
* is done according to subnet mask, not the masks here.
*/
#define IN_CLASSA(i) (((long)(i) & 0x80000000) == 0)
#define IN_CLASSA_NET 0xff000000
#define IN_CLASSA_NSHIFT 24
#define IN_CLASSA_HOST 0x00ffffff
#define IN_CLASSA_MAX 128

#define IN_CLASSB(i) (((long)(i) & 0xc0000000) == 0x80000000)
#define IN_CLASSB_NET 0xffff0000
#define IN_CLASSB_NSHIFT 16
#define IN_CLASSB_HOST 0x0000ffff
#define IN_CLASSB_MAX 65536

#define IN_CLASSC(i) (((long)(i) & 0xc0000000) == 0xc0000000)
#define IN_CLASSC_NET 0xffffff00
#define IN_CLASSC_NSHIFT 8
#define IN_CLASSC_HOST 0x000000ff

#define INADDR_ANY (u_long)0x00000000
#define INADDR_LOOPBACK 0x7f000001
#define INADDR_BROADCAST (u_long)0xffffffff
#define INADDR_NONE 0xffffffff

/*
* Socket address, internet style.
*/
struct sockaddr_in {
 short sin_family;
 u_short sin_port;
 struct in_addr sin_addr;
 char sin_zero[8];
};

#define WSADESCRIPTION_LEN 256
#define WSASYS_STATUS_LEN 128

typedef struct WSAData {
 WORD wVersion;
 WORD wHighVersion;
 char szDescription[WSADESCRIPTION_LEN+1];
 char szSystemStatus[WSASYS_STATUS_LEN+1];
 unsigned short iMaxSockets;
 unsigned short iMaxUdpDg;
 char FAR * lpVendorInfo;
} WSADATA;

typedef WSADATA FAR *LPWSADATA;

/*
* Options for use with [gs]etsockopt at the IP level.
*/
#define IP_OPTIONS 1 /* set/get IP per-packet options */

/*
* Definitions related to sockets: types, address families, options,

141

* taken from the BSD file sys/socket.h.
*/

/*
* This is used instead of -1, since the
* SOCKET type is unsigned.
*/
#define INVALID_SOCKET (SOCKET)(~0)
#define SOCKET_ERROR (-1)

/*
* Types
*/
#define SOCK_STREAM 1 /* stream socket */
#define SOCK_DGRAM 2 /* datagram socket */
#define SOCK_RAW 3 /* raw-protocol interface */
#define SOCK_RDM 4 /* reliably-delivered message */
#define SOCK_SEQPACKET 5 /* sequenced packet stream */

/*
* Option flags per-socket.
*/
#define SO_DEBUG 0x0001 /* turn on debugging info recording */
#define SO_ACCEPTCONN 0x0002 /* socket has had listen() */
#define SO_REUSEADDR 0x0004 /* allow local address reuse */
#define SO_KEEPALIVE 0x0008 /* keep connections alive */
#define SO_DONTROUTE 0x0010 /* just use interface addresses */
#define SO_BROADCAST 0x0020 /* permit sending of broadcast msgs */
#define SO_USELOOPBACK 0x0040 /* bypass hardware when possible */
#define SO_LINGER 0x0080 /* linger on close if data present */
#define SO_OOBINLINE 0x0100 /* leave received OOB data in line */

#define SO_DONTLINGER (u_int)(~SO_LINGER)

/*
* Additional options.
*/
#define SO_SNDBUF 0x1001 /* send buffer size */
#define SO_RCVBUF 0x1002 /* receive buffer size */
#define SO_SNDLOWAT 0x1003 /* send low-water mark */
#define SO_RCVLOWAT 0x1004 /* receive low-water mark */
#define SO_SNDTIMEO 0x1005 /* send timeout */
#define SO_RCVTIMEO 0x1006 /* receive timeout */
#define SO_ERROR 0x1007 /* get error status and clear */
#define SO_TYPE 0x1008 /* get socket type */

/*
* TCP options.
*/
#define TCP_NODELAY 0x0001

/*
* Address families.
*/
#define AF_UNSPEC 0 /* unspecified */
#define AF_UNIX 1 /* local to host (pipes, portals) */
#define AF_INET 2 /* internetwork: UDP, TCP, etc. */
#define AF_IMPLINK 3 /* arpanet imp addresses */
#define AF_PUP 4 /* pup protocols: e.g. BSP */
#define AF_CHAOS 5 /* mit CHAOS protocols */
#define AF_NS 6 /* XEROX NS protocols */
#define AF_ISO 7 /* ISO protocols */
#define AF_OSI AF_ISO /* OSI is ISO */
#define AF_ECMA 8 /* european computer manufacturers */
#define AF_DATAKIT 9 /* datakit protocols */
#define AF_CCITT 10 /* CCITT protocols, X.25 etc */
#define AF_SNA 11 /* IBM SNA */
#define AF_DECnet 12 /* DECnet */
#define AF_DLI 13 /* Direct data link interface */
#define AF_LAT 14 /* LAT */

142

#define AF_HYLINK 15 /* NSC Hyperchannel */
#define AF_APPLETALK 16 /* AppleTalk */
#define AF_NETBIOS 17 /* NetBios-style addresses */

#define AF_MAX 18

/*
* Structure used by kernel to store most
* addresses.
*/
struct sockaddr {
 u_short sa_family; /* address family */
 char sa_data[14]; /* up to 14 bytes of direct address */
};

/*
* Structure used by kernel to pass protocol
* information in raw sockets.
*/
struct sockproto {
 u_short sp_family; /* address family */
 u_short sp_protocol; /* protocol */
};

/*
* Protocol families, same as address families for now.
*/
#define PF_UNSPEC AF_UNSPEC
#define PF_UNIX AF_UNIX
#define PF_INET AF_INET
#define PF_IMPLINK AF_IMPLINK
#define PF_PUP AF_PUP
#define PF_CHAOS AF_CHAOS
#define PF_NS AF_NS
#define PF_ISO AF_ISO
#define PF_OSI AF_OSI
#define PF_ECMA AF_ECMA
#define PF_DATAKIT AF_DATAKIT
#define PF_CCITT AF_CCITT
#define PF_SNA AF_SNA
#define PF_DECnet AF_DECnet
#define PF_DLI AF_DLI
#define PF_LAT AF_LAT
#define PF_HYLINK AF_HYLINK
#define PF_APPLETALK AF_APPLETALK

#define PF_MAX AF_MAX

/*
* Structure used for manipulating linger option.
*/
struct linger {
 u_short l_onoff; /* option on/off */
 u_short l_linger; /* linger time */
};

/*
* Level number for (get/set)sockopt() to apply to socket itself.
*/
#define SOL_SOCKET 0xffff /* options for socket level */

/*
* Maximum queue length specifiable by listen.
*/
#define SOMAXCONN 5

#define MSG_OOB 0x1 /* process out-of-band data */
#define MSG_PEEK 0x2 /* peek at incoming message */
#define MSG_DONTROUTE 0x4 /* send without using routing tables */

143

#define MSG_MAXIOVLEN 16

/*
* Define constant based on rfc883, used by gethostbyxxxx() calls.
*/
#define MAXGETHOSTSTRUCT 1024

/*
* Define flags to be used with the WSAAsyncSelect() call.
*/
#define FD_READ 0x01
#define FD_WRITE 0x02
#define FD_OOB 0x04
#define FD_ACCEPT 0x08
#define FD_CONNECT 0x10
#define FD_CLOSE 0x20

/*
* All Windows Sockets error constants are biased by WSABASEERR from
* the "normal"
*/
#define WSABASEERR 10000
/*
* Windows Sockets definitions of regular Microsoft C error constants
*/
#define WSAEINTR (WSABASEERR+4)
#define WSAEBADF (WSABASEERR+9)
#define WSAEACCES (WSABASEERR+13)
#define WSAEFAULT (WSABASEERR+14)
#define WSAEINVAL (WSABASEERR+22)
#define WSAEMFILE (WSABASEERR+24)

/*
* Windows Sockets definitions of regular Berkeley error constants
*/
#define WSAEWOULDBLOCK (WSABASEERR+35)
#define WSAEINPROGRESS (WSABASEERR+36)
#define WSAEALREADY (WSABASEERR+37)
#define WSAENOTSOCK (WSABASEERR+38)
#define WSAEDESTADDRREQ (WSABASEERR+39)
#define WSAEMSGSIZE (WSABASEERR+40)
#define WSAEPROTOTYPE (WSABASEERR+41)
#define WSAENOPROTOOPT (WSABASEERR+42)
#define WSAEPROTONOSUPPORT (WSABASEERR+43)
#define WSAESOCKTNOSUPPORT (WSABASEERR+44)
#define WSAEOPNOTSUPP (WSABASEERR+45)
#define WSAEPFNOSUPPORT (WSABASEERR+46)
#define WSAEAFNOSUPPORT (WSABASEERR+47)
#define WSAEADDRINUSE (WSABASEERR+48)
#define WSAEADDRNOTAVAIL (WSABASEERR+49)
#define WSAENETDOWN (WSABASEERR+50)
#define WSAENETUNREACH (WSABASEERR+51)
#define WSAENETRESET (WSABASEERR+52)
#define WSAECONNABORTED (WSABASEERR+53)
#define WSAECONNRESET (WSABASEERR+54)
#define WSAENOBUFS (WSABASEERR+55)
#define WSAEISCONN (WSABASEERR+56)
#define WSAENOTCONN (WSABASEERR+57)
#define WSAESHUTDOWN (WSABASEERR+58)
#define WSAETOOMANYREFS (WSABASEERR+59)
#define WSAETIMEDOUT (WSABASEERR+60)
#define WSAECONNREFUSED (WSABASEERR+61)
#define WSAELOOP (WSABASEERR+62)
#define WSAENAMETOOLONG (WSABASEERR+63)
#define WSAEHOSTDOWN (WSABASEERR+64)
#define WSAEHOSTUNREACH (WSABASEERR+65)
#define WSAENOTEMPTY (WSABASEERR+66)
#define WSAEPROCLIM (WSABASEERR+67)
#define WSAEUSERS (WSABASEERR+68)
#define WSAEDQUOT (WSABASEERR+69)

144

#define WSAESTALE (WSABASEERR+70)
#define WSAEREMOTE (WSABASEERR+71)

/*
* Extended Windows Sockets error constant definitions
*/
#define WSASYSNOTREADY (WSABASEERR+91)
#define WSAVERNOTSUPPORTED (WSABASEERR+92)
#define WSANOTINITIALISED (WSABASEERR+93)

/*
* Error return codes from gethostbyname() and gethostbyaddr()
* (when using the resolver). Note that these errors are
* retrieved via WSAGetLastError() and must therefore follow
* the rules for avoiding clashes with error numbers from
* specific implementations or language run-time systems.
* For this reason the codes are based at WSABASEERR+1001.
* Note also that [WSA]NO_ADDRESS is defined only for
* compatibility purposes.
*/

#define h_errno WSAGetLastError()

/* Authoritative Answer: Host not found */
#define WSAHOST_NOT_FOUND (WSABASEERR+1001)
#define HOST_NOT_FOUND WSAHOST_NOT_FOUND

/* Non-Authoritative: Host not found, or SERVERFAIL */
#define WSATRY_AGAIN (WSABASEERR+1002)
#define TRY_AGAIN WSATRY_AGAIN

/* Non recoverable errors, FORMERR, REFUSED, NOTIMP */
#define WSANO_RECOVERY (WSABASEERR+1003)
#define NO_RECOVERY WSANO_RECOVERY

/* Valid name, no data record of requested type */
#define WSANO_DATA (WSABASEERR+1004)
#define NO_DATA WSANO_DATA

/* no address, look for MX record */
#define WSANO_ADDRESS WSANO_DATA
#define NO_ADDRESS WSANO_ADDRESS

/*
* Windows Sockets errors redefined as regular Berkeley error constants
*/
#define EWOULDBLOCK WSAEWOULDBLOCK
#define EINPROGRESS WSAEINPROGRESS
#define EALREADY WSAEALREADY
#define ENOTSOCK WSAENOTSOCK
#define EDESTADDRREQ WSAEDESTADDRREQ
#define EMSGSIZE WSAEMSGSIZE
#define EPROTOTYPE WSAEPROTOTYPE
#define ENOPROTOOPT WSAENOPROTOOPT
#define EPROTONOSUPPORT WSAEPROTONOSUPPORT
#define ESOCKTNOSUPPORT WSAESOCKTNOSUPPORT
#define EOPNOTSUPP WSAEOPNOTSUPP
#define EPFNOSUPPORT WSAEPFNOSUPPORT
#define EAFNOSUPPORT WSAEAFNOSUPPORT
#define EADDRINUSE WSAEADDRINUSE
#define EADDRNOTAVAIL WSAEADDRNOTAVAIL
#define ENETDOWN WSAENETDOWN
#define ENETUNREACH WSAENETUNREACH
#define ENETRESET WSAENETRESET
#define ECONNABORTED WSAECONNABORTED
#define ECONNRESET WSAECONNRESET
#define ENOBUFS WSAENOBUFS
#define EISCONN WSAEISCONN
#define ENOTCONN WSAENOTCONN
#define ESHUTDOWN WSAESHUTDOWN

145

#define ETOOMANYREFS WSAETOOMANYREFS
#define ETIMEDOUT WSAETIMEDOUT
#define ECONNREFUSED WSAECONNREFUSED
#define ELOOP WSAELOOP
#define ENAMETOOLONG WSAENAMETOOLONG
#define EHOSTDOWN WSAEHOSTDOWN
#define EHOSTUNREACH WSAEHOSTUNREACH
#define ENOTEMPTY WSAENOTEMPTY
#define EPROCLIM WSAEPROCLIM
#define EUSERS WSAEUSERS
#define EDQUOT WSAEDQUOT
#define ESTALE WSAESTALE
#define EREMOTE WSAEREMOTE

/* Socket function prototypes */

#ifdef __cplusplus
extern "C" {
#endif

SOCKET PASCAL FAR accept (SOCKET s, struct sockaddr FAR *addr,
 int FAR *addrlen);

int PASCAL FAR bind (SOCKET s, const struct sockaddr FAR *addr, int namelen);

int PASCAL FAR closesocket (SOCKET s);

int PASCAL FAR connect (SOCKET s, const struct sockaddr FAR *name, int namelen);

int PASCAL FAR ioctlsocket (SOCKET s, long cmd, u_long FAR *argp);

int PASCAL FAR getpeername (SOCKET s, struct sockaddr FAR *name,
 int FAR * namelen);

int PASCAL FAR getsockname (SOCKET s, struct sockaddr FAR *name,
 int FAR * namelen);

int PASCAL FAR getsockopt (SOCKET s, int level, int optname,
 char FAR * optval, int FAR *optlen);

u_long PASCAL FAR htonl (u_long hostlong);

u_short PASCAL FAR htons (u_short hostshort);

unsigned long PASCAL FAR inet_addr (const char FAR * cp);

char FAR * PASCAL FAR inet_ntoa (struct in_addr in);

int PASCAL FAR listen (SOCKET s, int backlog);

u_long PASCAL FAR ntohl (u_long netlong);

u_short PASCAL FAR ntohs (u_short netshort);

int PASCAL FAR recv (SOCKET s, char FAR * buf, int len, int flags);

int PASCAL FAR recvfrom (SOCKET s, char FAR * buf, int len, int flags,
 struct sockaddr FAR *from, int FAR * fromlen);

int PASCAL FAR select (int nfds, fd_set FAR *readfds, fd_set FAR *writefds,
 fd_set FAR *exceptfds, const struct timeval FAR *timeout);

int PASCAL FAR send (SOCKET s, const char FAR * buf, int len, int flags);

int PASCAL FAR sendto (SOCKET s, const char FAR * buf, int len, int flags,
 const struct sockaddr FAR *to, int tolen);

int PASCAL FAR setsockopt (SOCKET s, int level, int optname,
 const char FAR * optval, int optlen);

146

int PASCAL FAR shutdown (SOCKET s, int how);

SOCKET PASCAL FAR socket (int af, int type, int protocol);

/* Database function prototypes */

struct hostent FAR * PASCAL FAR gethostbyaddr(const char FAR * addr,
 int len, int type);

struct hostent FAR * PASCAL FAR gethostbyname(const char FAR * name);

int PASCAL FAR gethostname (char FAR * name, int namelen);

struct servent FAR * PASCAL FAR getservbyport(int port, const char FAR * proto);

struct servent FAR * PASCAL FAR getservbyname(const char FAR * name,
 const char FAR * proto);

struct protoent FAR * PASCAL FAR getprotobynumber(int proto);

struct protoent FAR * PASCAL FAR getprotobyname(const char FAR * name);

/* Microsoft Windows Extension function prototypes */

int PASCAL FAR WSAStartup(WORD wVersionRequired, LPWSADATA lpWSAData);

int PASCAL FAR WSACleanup(void);

void PASCAL FAR WSASetLastError(int iError);

int PASCAL FAR WSAGetLastError(void);

BOOL PASCAL FAR WSAIsBlocking(void);

int PASCAL FAR WSAUnhookBlockingHook(void);

FARPROC PASCAL FAR WSASetBlockingHook(FARPROC lpBlockFunc);

int PASCAL FAR WSACancelBlockingCall(void);

HANDLE PASCAL FAR WSAAsyncGetServByName(HWND hWnd, u_int wMsg,
 const char FAR * name,
 const char FAR * proto,
 char FAR * buf, int buflen);

HANDLE PASCAL FAR WSAAsyncGetServByPort(HWND hWnd, u_int wMsg, int port,
 const char FAR * proto, char FAR * buf,
 int buflen);

HANDLE PASCAL FAR WSAAsyncGetProtoByName(HWND hWnd, u_int wMsg,
 const char FAR * name, char FAR * buf,
 int buflen);

HANDLE PASCAL FAR WSAAsyncGetProtoByNumber(HWND hWnd, u_int wMsg,
 int number, char FAR * buf,
 int buflen);

HANDLE PASCAL FAR WSAAsyncGetHostByName(HWND hWnd, u_int wMsg,
 const char FAR * name, char FAR * buf,
 int buflen);

HANDLE PASCAL FAR WSAAsyncGetHostByAddr(HWND hWnd, u_int wMsg,
 const char FAR * addr, int len, int type,
 const char FAR * buf, int buflen);

int PASCAL FAR WSACancelAsyncRequest(HANDLE hAsyncTaskHandle);

int PASCAL FAR WSAAsyncSelect(SOCKET s, HWND hWnd, u_int wMsg,
 long lEvent);

147

#ifdef __cplusplus
}
#endif

/* Microsoft Windows Extended data types */
typedef struct sockaddr SOCKADDR;
typedef struct sockaddr *PSOCKADDR;
typedef struct sockaddr FAR *LPSOCKADDR;

typedef struct sockaddr_in SOCKADDR_IN;
typedef struct sockaddr_in *PSOCKADDR_IN;
typedef struct sockaddr_in FAR *LPSOCKADDR_IN;

typedef struct linger LINGER;
typedef struct linger *PLINGER;
typedef struct linger FAR *LPLINGER;

typedef struct in_addr IN_ADDR;
typedef struct in_addr *PIN_ADDR;
typedef struct in_addr FAR *LPIN_ADDR;

typedef struct fd_set FD_SET;
typedef struct fd_set *PFD_SET;
typedef struct fd_set FAR *LPFD_SET;

typedef struct hostent HOSTENT;
typedef struct hostent *PHOSTENT;
typedef struct hostent FAR *LPHOSTENT;

typedef struct servent SERVENT;
typedef struct servent *PSERVENT;
typedef struct servent FAR *LPSERVENT;

typedef struct protoent PROTOENT;
typedef struct protoent *PPROTOENT;
typedef struct protoent FAR *LPPROTOENT;

typedef struct timeval TIMEVAL;
typedef struct timeval *PTIMEVAL;
typedef struct timeval FAR *LPTIMEVAL;

/*
* Windows message parameter composition and decomposition
* macros.
*
* WSAMAKEASYNCREPLY is intended for use by the Windows Sockets implementation
* when constructing the response to a WSAAsyncGetXByY() routine.
*/
#define WSAMAKEASYNCREPLY(buflen,error) MAKELONG(buflen,error)
/*
* WSAMAKESELECTREPLY is intended for use by the Windows Sockets implementation
* when constructing the response to WSAAsyncSelect().
*/
#define WSAMAKESELECTREPLY(event,error) MAKELONG(event,error)
/*
* WSAGETASYNCBUFLEN is intended for use by the Windows Sockets application
* to extract the buffer length from the lParam in the response
* to a WSAGetXByY().
*/
#define WSAGETASYNCBUFLEN(lParam) LOWORD(lParam)
/*
* WSAGETASYNCERROR is intended for use by the Windows Sockets application
* to extract the error code from the lParam in the response
* to a WSAGetXByY().
*/
#define WSAGETASYNCERROR(lParam) HIWORD(lParam)
/*
* WSAGETSELECTEVENT is intended for use by the Windows Sockets application
* to extract the event code from the lParam in the response
* to a WSAAsyncSelect().

148

*/
#define WSAGETSELECTEVENT(lParam) LOWORD(lParam)
/*
* WSAGETSELECTERROR is intended for use by the Windows Sockets application
* to extract the error code from the lParam in the response
* to a WSAAsyncSelect().
*/
#define WSAGETSELECTERROR(lParam) HIWORD(lParam)

#endif /* _WINSOCKAPI_ */

149

Appendix B. Notes for Windows Sockets Suppliers
B.1 Introduction
A Windows Sockets implementation must implement ALL the functionality described
in the Windows Sockets documentation. Validation of compliance is discussed in
section .

Windows Sockets Version 1.1 implementations must support both TCP and UDP type
sockets. An implementation may support raw sockets (of type SOCK_RAW), but their
use is deprecated.

Certain APIs documented above have special notes for Windows Sockets
implementors. A Windows Sockets implementation should pay special attention to
conforming to the API as documented. The Special Notes are provided for assistance
and clarification.

B.2 Windows Sockets Components
B.2.1 Development Components
The Windows Sockets development components for use by Windows Sockets
application developers will be provided by each Windows Sockets supplier. These
Windows Sockets development components are:

Component Description
Windows Sockets Documentation This

document
WINSOCK.LIB file Windows Sockets API Import Library
WINSOCK.H file Windows Sockets Header File
NETDB.H file Berkeley Compatible Header File
ARPA/INET.H file Berkeley Compatible Header File
SYS/TIME.H file Berkeley Compatible Header File
SYS/SOCKET.H file Berkeley Compatible Header File
NETINET/IN.H file Berkeley Compatible Header File

B.2.2 Run Time Components
The run time component provided by each Windows Sockets supplier is:

Component Description
WINSOCK.DLL The Windows Sockets API implementation DLL

B.3 Multithreadedness and blocking routines.
Data areas returned by, for example, the getXbyY() routines MUST be on a per thread
basis.

Note that an application MUST be prevented from making multiple nested Windows
Sockets function calls. Only one outstanding function call will be allowed for a
particular task. Any Windows Sockets call performed when an existing blocking call is
already outstanding will fail with an error code of WSAEINPROGRESS. There are two
exceptions to this restriction: WSACancelBlockingCall() and WSAIsBlocking() may be
called at any time. Windows Sockets suppliers should note that although preliminary
drafts of this specification indicated that the restriction only applied to blocking
function calls, and that it would be permissible to make non-blocking calls while a
blocking call was in progress, this is no longer true.

Regarding the implementation of blocking routines, the solution in Windows Sockets
150

is to simulate the blocking mechanism by having each routine call PeekMessage() as
it waits for the completion of its operation. In anticipation of this, the function
WSASetBlockingHook() is provided to allow the programmer to define a special
routine to be called instead of the default PeekMessage() loop. The blocking hook
functions are discussed in more detail in , WSASetBlockingHook().

B.4 Database Files
The database routines in the getXbyY() family (gethostbyaddr(), etc.) were
originally designed (in the first Berkeley UNIX releases) as mechanisms for looking up
information in text databases. A Windows Sockets supplier may choose to employ
local files OR a name service to provide some or all of this information. If local files
exist, the format of the files must be identical to that used in BSD UNIX, allowing for
the differences in text file formats.

B.5 FD_ISSET
It is necessary to implement the FD_ISSET Berkeley macro using a supporting
function: __WSAFDIsSet(). It is the responsibility of a Windows Sockets
implementation to make this available as part of the Windows Sockets API. Unlike the
other functions exported by a Windows Sockets DLL, however, this function is not
intended to be invoked directly by Windows Sockets applications: it should be used
only to support the FD_ISSET macro. The source code for this function is listed below:

int FAR
__WSAFDIsSet(SOCKET fd, fd_set FAR *set)
{
 int i = set->fd_count;

 while (i--)
if (set->fd_array[i] == fd)
 return 1;

 return 0;
}

B.6 Error Codes
In order to avoid conflict between various compiler environments Windows Sockets
implementations MUST return the error codes listed in the API specification, using the
manifest constants beginning with "WSA". The Berkeley-compatible error code
definitions are provided solely for compatibility purposes for applications which are
being ported from other platforms.

B.7 DLL Ordinal Numbers
The winsock.def file for use by every Windows Sockets implementation is as follows.
Ordinal values starting at 1000 are reserved for Windows Sockets implementors to
use for exporting private interfaces to their DLLs. A Windows Sockets
implementation must not use any ordinals 999 and below except for those APIs listed
below. An application which wishes to work with any Windows Sockets DLL must use
only those routines listed below; using a private export makes an application
dependent on a particular Windows Sockets implementation.
;
; File: winsock.def
; System: MS-Windows 3.x
; Summary: Module definition file for Windows Sockets DLL.
;

151

LIBRARY WINSOCK ; Application's module name

DESCRIPTION 'BSD Socket API for Windows'

EXETYPE WINDOWS ; required for all windows applications

STUB 'WINSTUB.EXE' ; generates error message if application
 ; is run without Windows

;CODE can be FIXED in memory because of potential upcalls
CODE PRELOAD FIXED

;DATA must be SINGLE and at a FIXED location since this is a DLL
DATA PRELOAD FIXED SINGLE

HEAPSIZE 1024
STACKSIZE 16384

; All functions that will be called by any Windows routine
; must be exported. Any additional exports beyond those defined
; here must have ordinal numbers 1000 or above.

EXPORTS
 accept @1
 bind @2
 closesocket @3
 connect @4
 getpeername @5
 getsockname @6
 getsockopt @7
 htonl @8
 htons @9
 inet_addr @10
 inet_ntoa @11
 ioctlsocket @12
 listen @13
 ntohl @14
 ntohs @15
 recv @16
 recvfrom @17
 select @18
 send @19
 sendto @20
 setsockopt @21
 shutdown @22
 socket @23

 gethostbyaddr @51
 gethostbyname @52
 getprotobyname @53
 getprotobynumber @54
 getservbyname @55
 getservbyport @56
 gethostname @57

 WSAAsyncSelect @101
 WSAAsyncGetHostByAddr @102
 WSAAsyncGetHostByName @103
 WSAAsyncGetProtoByNumber @104
 WSAAsyncGetProtoByName @105
 WSAAsyncGetServByPort @106
 WSAAsyncGetServByName @107
 WSACancelAsyncRequest @108
 WSASetBlockingHook @109
 WSAUnhookBlockingHook @110
 WSAGetLastError @111
 WSASetLastError @112
 WSACancelBlockingCall @113
 WSAIsBlocking @114

152

 WSAStartup @115
 WSACleanup @116

 __WSAFDIsSet @151

 WEP @500 RESIDENTNAME

;eof

B.8 Validation Suite
An alpha version of the Windows Sockets Test and Validation Suite to ensure Windows Sockets
compatibility will be available at Fall 1992 Interop from Microsoft. This alpha version includes
functionality testing of the Windows Sockets interface and is supported by a comprehensive scripting
language. The final version of the suite is expected to be available in January 1993, and it will include a
more sophisticated user interface. Beta versions may be available in the interim. Further documentation on
the test suite is available from Microsoft.

153

Appendix C. For Further Reference
This specification is intended to cover the Windows Sockets interface to TCP/IP in
detail. Many details of TCP/IP and Windows, however, are intentionally omitted in the
interest of brevity, and this specification often assumes background knowledge of
these topics. For more information, the following references may be helpful:

Braden, R.[1989], RFC 1122, Requirements for Internet Hosts--Communication
Layers, Internet Engineering Task Force.

Comer, D. [1991], Internetworking with TCP/IP Volume I: Principles, Protocols, and
Architecture, Prentice Hall, Englewood Cliffs, New Jersey.

Comer, D. and Stevens, D. [1991], Internetworking with TCP/IP Volume II: Design,
Implementation, and Internals, Prentice Hall, Englewood Cliffs, New
Jersey.

Comer, D. and Stevens, D. [1991], Internetworking with TCP/IP Volume III: Client-
Server Programming and Applications, Prentice Hall, Englewood Cliffs,
New Jersey.

Leffler, S. et al., An Advanced 4.3BSD Interprocess Communication Tutorial.

Petzold, C. [1992], Programming Windows 3.1, Microsoft Press, Redmond,
Washington.

Stevens, W.R. [1990], Unix Network Programming, Prentice Hall, Englewood Cliffs,
New Jersey.

Appendix D. Background Information
D.1 Legal Status of Windows Sockets

The copyright for the Windows Sockets specification is owned by the specification authors listed on the
title page. Permission is granted to redistribute this specification in any form, provided that the contents of
the specification are not modified. Windows Sockets implementors are encouraged to include this
specification with their product documentation.

The Windows Sockets logo on the title page of this document is meant for use on both Windows Sockets
implementations and for applications that use the Windows Sockets interface. Use of the logo is
encouraged on packaging, documentation, collateral, and advertising. The logo is
available on microdyne.com in pub/winsock as winsock.bmp. The suggested color for the logo's title bar is
blue, the electrical socket grey, and the text and outline black.

D.2 The Story Behind the Windows Sockets Icon
(by Alistair Banks, Microsoft Corporation)

We thought we'd do a "Wind Sock" at one stage--but you try to get that into 32x32 bits! It would have had
to look wavy and colorful, and... well, it just didn't work. Also, our graphics designers have "opinions"
about the icons truly representing what they are--people would have thought this was "The colorful wavy
tube specification 1.0!"

154

I tried to explain "API" "Programming Interface" to the artist--we ended up with toolbox icons with little
flying windows

Then we came to realise that we should be going after the shortened form of the name, rather the name in
full... Windows Sockets... And so we went for that - so she drew (now remember I'm English and you're
probably American) "Windows Spanner", a.k.a. a socket wrench. In the U.S. you'd have been talking about
the "Windows Socket spec" OK, but in England that would have been translated as "Windows Spanner
Spec 1.0" - so we went to Electrical sockets - well the first ones came out looking like "Windows Pignose
Spec 1.0"!!!!

So how do you use 32x32, get an international electrical socket! You take the square type (American &
English OK, Europe & Australia are too rounded)--you choose the American one, because it's on the wall in
front of you (and it's more compact (but less safe, IMHO) and then you turn it upside down, thereby
compromising its nationality!

[IMHO = "In My Humble Opinion"--ed.]

1 Windows is a trademark of Microsoft Corporation.
2 UNIX is a trademark of Unix System Laboratories, Inc.
3 VAX is a trademark of Digital Equipment Corporation.
4 68000 is a trademark of Motorola, Inc.
5 This specification uses the function name getXbyY() to represent the set of
routines gethostbyaddr(), gethostbyname(), etc. Similarly WSAAsyncGetXByY()
represents WSAAsyncGetHostByAddr(), etc.
6 NT and Windows/NT are trademarks of Microsoft Corporation.
7Note that there is a timing window between the accept() call and the call to
WSAAsyncSelect() to change the events or wMsg. An application which desires a
different wMsg for the listening and accept()'ed sockets should ask for only
FD_ACCEPT events on the listening socket, then set appropriate events after the
accept(). Since FD_ACCEPT is never sent for a connected socket and FD_READ,
FD_WRITE, FD_OOB, and FD_CLOSE are never sent for listening sockets, this will not
impose difficulties.

155

